首页> 外文期刊>Journal of chemical theory and computation: JCTC >Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations
【24h】

Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations

机译:基于紧密结合量子化学计算的荟萃动力学模拟的化学化合物,塑造剂和反应空间探索

获取原文
获取原文并翻译 | 示例
           

摘要

The semiempirical tight-binding based quantum chemistry method GFN2-xTB is used in the framework of meta-dynamics (MTD) to globally explore chemical compound, conformer, and reaction space. The biasing potential given as a sum of Gaussian functions is expressed with the root mean-square-deviation (RMSD) in Cartesian space as a metric for the collective variables. This choice makes the approach robust and generally applicable to three common problems (i.e., conformer search, chemical reaction space exploration in a virtual nanoreactor, and for guessing reaction paths). Because of the inherent locality of the atomic RMSD, functional group or fragment selective treatments are possible facilitating the Time investigation of catalytic processes where, for example, only the substrate is thermally activated. Due to the approximate character of the GFN2-xTB method, the resulting structure ensembles require further refinement with more sophisticated, for example, density functional or wave function theory methods. However, the approach is extremely efficient running routinely on common laptop computers in minutes to hours of computation time even for realistically sized molecules with a few hundred atoms. Furthermore, the underlying potential energy surface for molecules containing almost all elements (Z = 1-86) is globally consistent including the covalent dissociation process and electronically complicated situations in, for example, transition metal systems. As examples, thermal decomposition, ethyne oligomerization, the oxidation of hydrocarbons (by oxygen and a P450 enzyme model), a Miller-Urey model system, a thermally forbidden dimerization, and a multistep intramolecular cyclization reaction are shown. For typical conformational search problems of organic drug molecules, the new MTD(RMSD) algorithm yields lower energy structures and more complete conformer ensembles at reduced computational effort compared with its already well performing predecessor.
机译:基于半透明的基于粘合的量子化学方法GFN2-XTB用于Meta-Dynamics(MTD)的框架,以全局探索化合物,适形剂和反应空间。作为高斯函数之和给出的偏置电位用笛卡尔空间中的根均方偏差(RMSD)表示为集体变量的度量。该选择使得能够稳健,通常适用于三个常见问题(即,虚拟纳米反应器中的化学反应空间探索,以及猜测反应路径)。由于原子RMSD的固有局部性,可以促进官能团或片段选择性处理,便于催化过程的时间调查,例如,在例如仅基质被热激活。由于GFN2-XTB方法的近似,所得到的结构整合需要进一步改进,例如密度函数或波函数理论方法更复杂。然而,即使对于具有几百个原子的现实大小的分子,几分钟到数小时的普通笔记本电脑,这种方法常规运行。此外,含有几乎所有元素(Z = 1-86)的分子的底层电位能表面是全球一致的,包括共价解离过程和例如过渡金属系统中的电子复杂情况。作为实例,显示出乙炔寡聚化,烃的氧化(通过氧气和P450酶模型),米勒 - urey模型系统,热禁止的二聚化和多步分子内环化反应。对于有机药物分子的典型构象搜索问题,新的MTD(RMSD)算法与其在已经良好的前辈相比,在减少的计算工作中产生了更低的能量结构和更完整的构装集合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号