...
首页> 外文期刊>Journal of biomedical materials research, Part A >Award Winner in the Young Investigator Category, 2014 Society for BiomateriaEs Annual Meeting and Exposition, Denver, Colorado, April 16-19, 2014 Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties
【24h】

Award Winner in the Young Investigator Category, 2014 Society for BiomateriaEs Annual Meeting and Exposition, Denver, Colorado, April 16-19, 2014 Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties

机译:奖得主在年轻的调查员类别中,2014年生物保证人社会年会和博览会,丹佛,科罗拉多州,2014年4月16日至194日周期性穿孔核心 - 壳胶原生物材料平衡细胞浸润,生物活性和机械性能

获取原文
获取原文并翻译 | 示例
           

摘要

Orthopedic tissue engineering requires biomaterials with robust mechanics as well as adequate porosity and permeability to support cell motility, proliferation, and new extracellular matrix (ECM) synthesis. While collagen-glycos-aminoglycan (CG) scaffolds have been developed for a range of tissue engineering applications, they exhibit poor mechanical properties. Building on previous work in our lab that described composite CG biomaterials containing a porous scaffold core and nonporous CG membrane shell inspired by mechanically efficient core-shell composites in nature, this study explores an approach to improve cellular infiltration and metabolic health within these core-shell composites. We use indentation analyses to demonstrate that CG membranes, while less permeable than porous CG scaffolds, show similar permeability to dense materials such as small intestine submu-cosa (SIS). We also describe a simple method to fabricate CG membranes with organized arrays of microscale perforations. We demonstrate that perforated membranes support improved tenocyte migration into CG scaffolds, and that migration is enhanced by plateiet-derived growth factor BB-mediated chemotaxis. CG core-shell composites fabricated with perforated membranes display scaffold-membrane integration with significantly improved tensile properties compared to scaffolds without membrane shells. Finally, we show that perforated membrane-scaffold composites support sustained tenocyte metabolic activity as well as improved cell infiltration and reduced expression of hypoxia-inducible factor 1a compared to composites with nonperforated membranes. These results will guide the design of improved biomaterials for tendon repair that are mechanically competent while also supporting infiltration of exogenous cells and other extrinsic mediators of wound healing.
机译:骨科组织工程需要具有稳健的力学以及足够的孔隙率和渗透性的生物材料,以支持细胞运动,增殖和新的细胞外基质(ECM)合成。虽然已经为一系列组织工程应用开发了胶原糖糖 - 氨基糖(CG)支架,但它们表现出差的机械性能。在我们的实验室中建立以前的工作,所述描述包含多孔支架芯和无孔CG膜壳的复合CG生物材料,本研究探讨了改善这些核壳内细胞浸润和代谢健康的方法复合材料。我们使用压痕分析来证明CG膜,而不是比多孔CG支架的渗透性,显示出与致密材料(如小肠底Cosa)(SIS)的类似渗透性。我们还描述了一种用有组织的微观穿孔阵列制造CG膜的简单方法。我们证明穿孔膜支持改善的胞胎血液迁移到CG支架中,并且通过板衍生的生长因子BB介导的趋化性增强了迁移。与具有膜壳的支架相比,具有穿孔膜制造的Cg核 - 壳复合材料,与没有膜壳的支架相比,具有显着改善的拉伸性能的支架膜整合。最后,我们表明穿孔膜 - 支架复合材料支持持续的胞胎代谢活性以及改善的细胞浸润和降低缺氧诱导因子1a的表达,与具有非预防膜的复合材料相比。这些结果将指导设计改进的生物材料,用于机械竞争力,同时还支持外源细胞和其他伤口愈合的其他外在介质的渗透。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号