首页> 外文期刊>Journal of biomedical materials research, Part A >Award Winner in the Young Investigator Category, 2014 Society for BiomateriaEs Annual Meeting and Exposition, Denver, Colorado, April 16-19, 2014 Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties
【24h】

Award Winner in the Young Investigator Category, 2014 Society for BiomateriaEs Annual Meeting and Exposition, Denver, Colorado, April 16-19, 2014 Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties

机译:2014年生物材料学会年会和博览会青年研究者类别获奖者,科罗拉多州丹佛,2014年4月16日至19日定期穿孔的核-壳胶原生物材料可平衡细胞浸润,生物活性和机械性能

获取原文
获取原文并翻译 | 示例
           

摘要

Orthopedic tissue engineering requires biomaterials with robust mechanics as well as adequate porosity and permeability to support cell motility, proliferation, and new extracellular matrix (ECM) synthesis. While collagen-glycos-aminoglycan (CG) scaffolds have been developed for a range of tissue engineering applications, they exhibit poor mechanical properties. Building on previous work in our lab that described composite CG biomaterials containing a porous scaffold core and nonporous CG membrane shell inspired by mechanically efficient core-shell composites in nature, this study explores an approach to improve cellular infiltration and metabolic health within these core-shell composites. We use indentation analyses to demonstrate that CG membranes, while less permeable than porous CG scaffolds, show similar permeability to dense materials such as small intestine submu-cosa (SIS). We also describe a simple method to fabricate CG membranes with organized arrays of microscale perforations. We demonstrate that perforated membranes support improved tenocyte migration into CG scaffolds, and that migration is enhanced by plateiet-derived growth factor BB-mediated chemotaxis. CG core-shell composites fabricated with perforated membranes display scaffold-membrane integration with significantly improved tensile properties compared to scaffolds without membrane shells. Finally, we show that perforated membrane-scaffold composites support sustained tenocyte metabolic activity as well as improved cell infiltration and reduced expression of hypoxia-inducible factor 1a compared to composites with nonperforated membranes. These results will guide the design of improved biomaterials for tendon repair that are mechanically competent while also supporting infiltration of exogenous cells and other extrinsic mediators of wound healing.
机译:整形外科组织工程需要具有强大机械性能以及足够的孔隙率和渗透性的生物材料,以支持细胞运动,增殖和新的细胞外基质(ECM)合成。虽然胶原蛋白-糖-氨基聚糖(CG)支架已经开发用于多种组织工程应用,但它们显示出较差的机械性能。基于我们实验室先前的工作,该工作描述了复合CG生物材料,其中包含多孔支架核心和无孔CG膜壳,受自然界中机械效率高的复合材料启发,这项研究探索了一种改善这些核壳内细胞浸润和代谢健康的方法复合材料。我们使用压痕分析来证明,虽然CG膜的渗透性不如多孔CG支架,但对致密材料(例如小肠粘膜下层(SIS))的渗透性相似。我们还描述了一种简单的方法来制造具有微尺度穿孔的有组织阵列的CG膜。我们证明穿孔的膜支持改善肌腱细胞迁移到CG支架,并且迁移由血小板衍生的生长因子BB介导的趋化性增强。与没有膜壳的支架相比,用穿孔膜制造的CG核-壳复合材料显示出支架-膜的集成,并具有显着改善的拉伸性能。最后,我们显示,与具有非穿孔膜的复合材料相比,穿孔的膜-支架复合材料支持持续的肌腱细胞代谢活性以及改善的细胞浸润和降低的缺氧诱导因子1a的表达。这些结果将指导用于肌腱修复的改良生物材料的设计,该材料具有机械性能,同时还支持外源细胞和伤口愈合的其他外源性介质的浸润。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号