...
首页> 外文期刊>Journal of biomedical materials research, Part A >Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues
【24h】

Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues

机译:用胶质模数官能化的光刻工程二氧化硅基材上的图案化人神经元网络

获取原文
获取原文并翻译 | 示例
           

摘要

Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning.
机译:具有硅半导体的接口神经元是通过各种生物工程方法解决的挑战。这样的构造通知我们对神经元编码和学习的理解,并最终导致我们创造智能神经调节剂。基本的先决条件是决定神经元细胞的空间组织。我们试图使用光刻定义的聚合物聚合物聚乙烯-c阵列进行图案神经元,用胎牛血清激活。我们使用纯化的人神经元细胞系[隆隆人体脑脑(Luhmes)],以确定芯片上片材的内核是否仍然可行,或者它们是否需要支撑细胞基材。在培养中培养时,Luhmes神经元未能模式,并没有显示任何分化的形态迹象。因此,我们寻求一种细胞类型,其中备parylene区域,假设这种细胞模板可以实现次要神经元粘附和网络形成。从测试的一系列细胞系,人胚肾(HEK)293细胞以最高的精度图案化。 Luhmes神经元粘附在预先建立的HEK 293细胞簇中,并且这种共有环境促进了神经元的形态分化。神经肌腱在粘附细胞躯体岛之间延伸,产生正交排列的神经元网络。 HEK 293细胞似乎满足类似于胶质胶质的角色,指示细胞粘附,并产生有利于神经元生存的环境。我们接下来用较慢的生长胶质瘤衍生的前体替换HEK 293细胞。这些初级人体细胞在二甲烯上精确地图案化,并提供了类似有效的支架,用于神经元粘附。这些发现推进了这种微制造兼容平台的神经元图案化的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号