首页> 外文期刊>Journal of Biomechanics >Algorithm to compute muscle excitation patterns that accurately track kinematics using a hybrid of numerical integration and optimization
【24h】

Algorithm to compute muscle excitation patterns that accurately track kinematics using a hybrid of numerical integration and optimization

机译:计算肌肉激励模式,使用数值集成和优化的混合来准确跟踪运动学的肌肉激励模式

获取原文
获取原文并翻译 | 示例
       

摘要

Forward dynamic simulation is used to examine the causal relationships between muscle excitation patterns and human movement. The computed muscle control (CMC) algorithm computes a set of muscle excitations for a movement using proportional-derivative control. However, errors between experimental and simulated kinematics may cause rapid movements. Herein, we propose a novel algorithm, i.e., hybrid computed muscle control (HCMC), which uses a hybrid of numerical integration and optimization to compute muscle excitation patterns that accurately track kinematics, even for rapid movements. We compared the muscle excitation patterns and accuracies of the kinematics simulated by HCMC and CMC using synthetic and experimental data. Two simple musculoskeletal models were used. The synthetic data were generated for three repetitive movements from the rest position to the flexed position (the hip, knee, and ankle underwent 10 degrees, 20 degrees, and 10 degrees plantar flexion, respectively) and back to the rest position for various times. Experimental data were obtained for a subject running at 220 steps/min. The maximum errors in all kinematics calculated using the HCMC algorithm were extremely lower than those calculated using CMC algorithm (HCMC: 0.04-0.07 degrees [synthetic data] and 0.00-0.03 degrees [experimental data]; CMC: 1.04-2.41 degrees [synthetic data] and 0.48-2.50 [experimental data]). For rapid movements, muscle excitations estimated using HCMC occurred early and without delay than those estimated using CMC. The HCMC algorithm can provide muscle excitation patterns that accurately track kinematics and may be useful for perturbation studies using forward dynamic simulation of joints characterized by a low range of motion during rapid movements. (C) 2020 Elsevier Ltd. All rights reserved.
机译:前向动态仿真用于检查肌肉激发模式与人体运动之间的因果关系。计算的肌肉控制(CMC)算法计算一组使用比例衍生物控制的运动的肌肉激励。然而,实验和模拟运动学之间的错误可能会导致快速运动。在此,我们提出了一种新颖的算法,即混合计算的肌肉控制(HCMC),其使用数值集成和优化的混合来计算精确跟踪运动学的肌肉激发模式,即使是为了快速运动。我们使用合成和实验数据比较了通过HCMC和CMC模拟的运动学的肌肉激发模式和精度。使用了两种简单的肌肉骨骼模型。生成合成数据,用于从静止位置到弯曲位置(臀部,膝关节和脚踝分别在10度,20度和10摄氏度的臀部屈曲)上并返回到静止位置各个时间。获得以220步/分钟运行的受试者获得实验数据。使用HCMC算法计算的所有运动学中的最大误差极低于使用CMC算法计算的那些(HCMC:0.04-0.07度[合成数据]和0.00-0.03度[实验数据]; CMC:1.04-2.41度[合成数据]和0.48-2.50 [实验数据])。为了快速运动,使用HCMC估计的肌肉激发早期并且没有延迟而不是使用CMC估计的延迟。 HCMC算法可以提供精确跟踪运动学的肌肉激发图案,并且可以使用在快速运动期间具有低运动范围的接头的前向动态模拟可用于扰动研究。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号