...
首页> 外文期刊>Journal of Biomechanics >Deformation of dorsal root ganglion due to pressure transients of venous blood and cerebrospinal fluid in the cervical vertebral canal
【24h】

Deformation of dorsal root ganglion due to pressure transients of venous blood and cerebrospinal fluid in the cervical vertebral canal

机译:由于颈椎管静脉血液和脑脊液压力瞬变导致背根神经节的变形

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The dorsal root ganglion (DRG) that is embedded in the foramen of the cervical vertebra can be injured during a whiplash motion. A potential cause is that whilst the neck bends in the whiplash motion, the changes of spinal canal volume induce impulsive pressure transients in the venous blood outside the dura mater (DM) and in the cerebrospinal fluid (CSF) inside the DM. The fluids can dynamically interact with the DRG and DM, which are deformable. In this work, the interaction is investigated numerically using a strong-coupling partitioned method that synchronize the computations of the fluid and structure. It is found that the interaction includes two basic processes, i.e., the pulling and pressing processes. In the pulling process, the DRG is stretched towards the spinal canal, and the venous blood is driven into the canal via the foramen. This process results from negative pressure in the fluids. In contrast, the pressing process is caused by positive pressure that leads to compression of the DRG and the outflow of the venous blood from the canal. The largest pressure gradient is observed at the foramen, where the DRG is located at. The DRG is subject to prominent von Mises stress near its end, which is fixed without motions. The negative internal pressure is more efficient to deform the DRG than the positive internal pressure. This indicates that the most hazardous condition for the DRG is the pulling process. (C) 2018 Elsevier Ltd. All rights reserved.
机译:嵌入颈椎孢子中的背根神经节(DRG)可以在鞭打运动期间受伤。潜在的原因是,虽然鞭打运动中的颈部弯曲,但是脊柱管体积的变化诱导Dura Mater(DM)外部的静脉血液中的脉冲瞬变和DM内的脑脊液(CSF)。流体可以动态地与DRG和DM相互作用,DRG和DM是可变形的。在这项工作中,使用强的耦合分区方法在数值上进行了对相互作用进行研究,该方法同步流体和结构的计算。发现交互包括两个基本过程,即拉动和压制过程。在拉动过程中,DRG朝向椎管伸展,静脉血液通过孔孔进入运河。该过程由流体中的负压产生。相反,按压过程是由正压引起的,导致鼠径的压缩和来自管道的静脉血液的流出。在孔的孔中观察到最大的压力梯度,其中DRG位于DRG。 DRG受到突出的von遗忘差异,附近的压力在没有动作的情况下固定。负内部压力更有效地变形DRG而不是正内压。这表明DRG的最具危险条件是拉动过程。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号