首页> 外文期刊>Biotechnology and Bioengineering >Anoxic Oxidation of Arsenite Linked to Chemolithotrophic Denitrification in Continuous Bioreactors
【24h】

Anoxic Oxidation of Arsenite Linked to Chemolithotrophic Denitrification in Continuous Bioreactors

机译:连续生物反应器中亚砷酸盐的氧化氧化与化学养分反硝化有关

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the anoxic oxidation of arsenite (As(III)) linked to chemolithotrophic denitrification was shown to be feasible in continuous bioreactors. Biological oxidation of As(III) was stable over prolonged periods of operation ranging up to 3 years in continuous denitrifying bioreactors with granular biofilms. As(III) was removed with a high conversion efficiency (>92%) to arsenate (As(V)) in periods with high volumetric loadings (e.g., 3.5-5.1 mmol As L(reactor)(-1)day(-1)). The maximum specific activity of sampled granular sludge from the bioreactors was 0.98 +/- 0.04 mmol As(V) formed g(-1) VSS day(-1) when determined at an initial concentration of 0.5 mM As(III). The microbial population adapted to high influent concentrations of As(III) up to 5.2 mM. However, the As(III) oxidation process was severely inhibited when 7.6-8.1 mM As(III) was fed. Activity was restored upon lowering the As(III) concentration to 3.8 mM. Several experimental strategies were utilized to demonstrate a dependence of the nitrate removal on As(III) oxidation as well as a dependence of the As(III) removal on nitrate reduction. The molar stoichiometric ratio of As(V) formed to nitrate removed (corrected for endogenous denitrification) in the bioreactors approximated 2.5, indicating complete denitrification was occurring. As(III) oxidation was also shown to be linked to the complete denitrification of NO3- to N-2 gas by demonstrating a significantly enhanced production of N-2 beyond the background endogenous production in a batch bioassay spiked with 3.5 mM As(III). The N-2 production also corresponded closely to the expected stoichiometry of 2.5 mol As(III) mol(-1) N-2-N for complete denitrification.
机译:在这项研究中,亚砷酸盐(As(III))的缺氧氧化与化营养性反硝化联系在一起,在连续生物反应器中被证明是可行的。在具有颗粒状生物膜的连续反硝化生物反应器中,As(III)的生物氧化在长达3年的长时间运行中均保持稳定。在高体积负荷(例如3.5-5.1 mmol As L(反应器)(-1)day(-1)的时间内,以高转化率(> 92%)去除As(III)来砷化(As(V)) ))。当以0.5 mM As(III)的初始浓度测定时,从生物反应器中取样的颗粒污泥的最大比活为0.98 +/- 0.04 mmol As(V),形成g(-1)VSS day(-1)。微生物种群适应高达5.2 mM的高浓度As(III)进水。然而,当进料7.6-8.1mM As(III)时,As(III)的氧化过程被严重抑制。将As(III)浓度降低至3.8 mM,可恢复活性。利用几种实验策略来证明硝酸盐去除对As(III)氧化的依赖性以及对As(III)去除对硝酸盐还原的依赖性。在生物反应器中形成的As(V)与除去的硝酸盐的摩尔化学计量比(针对内源性反硝化校正)约为2.5,表明正在发生完全反硝化。通过在掺有3.5 mM As(III)的分批生物测定法中证明N-2的产量大大超过背景内源性生产,还证明了As(III)的氧化与NO3-到N-2气体的完全脱氮有关。 。 N-2的产生也与完全脱氮的2.5摩尔As(III)mol(-1)N-2-N的预期化学计量相对应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号