首页> 外文期刊>Journal of Aerosol Science >Examination of the impacts of ice nuclei aerosol particles on microphysics, precipitation and electrification in a 1.5D aerosol-cloud bin model
【24h】

Examination of the impacts of ice nuclei aerosol particles on microphysics, precipitation and electrification in a 1.5D aerosol-cloud bin model

机译:检查冰核气溶胶颗粒对1.5D气溶胶云箱模型中微物质,降水和电气化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

To study the impact of dust aerosol particles through their role as ice nuclei (IN) on the development of cloud microphysics and electrification, as well as on their contribution to the precipitation formation, we used a 1.5D detailed microphysics model to conduct sensitivity analysis of the Cooperative Convective Precipitation Experiment (CCOPE) case on 19 July 1981 in Miles City, Montana, USA. The simulated cloud microphysical properties demonstrate that the increase in IN concentrations enhances the number of ice particles produced by heterogeneous nucleation. As a result of increased ice particle formation, the enhanced ice growth via deposition in the Wegener-Bergeron-Findeisen mechanism, more extensive riming and thus an enhancement of ice aggregation, is primarily responsible for the increased numbers of large ice particles. The increased IN concentrations could result in earlier (similar to 6.5 minutes) and stronger (by a factor of 60) precipitation and greater raindrop mass due to enhanced ice phase process. The changes in microphysical processes resulting from increased IN concentrations lead to more large ice particles, which is primarily responsible for the enhanced charge separation process. Additionally, the charge density rises with the increased large ice particle concentrations and both of them reach their maxima at the same height.
机译:为了研究粉尘气溶胶颗粒的影响,通过其作为冰核(IN)的云微体和电气化的发挥作用,以及它们对沉淀形成的贡献,我们使用了1.5D详细的微妙模型来进行敏感性分析1981年7月19日在美国蒙大拿州Mill City的合作对流降水实验(CCOPE)案例。模拟云微作业特性表明浓度的增加增强了通过异质成核产生的冰颗粒的数量。由于冰颗粒形成的增加,通过沉积在Wegener-Bergeron-Findeisen机构中的增强冰增长,更广泛的灵敏度以及冰聚集的增强,主要负责大冰颗粒数量增加。浓度的增加可能导致早期(类似于6.5分钟),并且由于增强的冰相工艺而较强(通过60分)沉淀和更大的雨水块。由浓度增加产生的微神科方法的变化导致更多大的冰颗粒,主要负责增强的电荷分离过程。另外,电荷密度随着大的冰颗粒浓度的增加而上升,并且它们两者在相同的高度达到其最大值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号