首页> 外文期刊>Journal of Aerosol Science >Multiphysics finite element modeling and validation of transient aerosol generation in an ultrasonic nebulizer drug delivery device
【24h】

Multiphysics finite element modeling and validation of transient aerosol generation in an ultrasonic nebulizer drug delivery device

机译:超声雾化器药物递送装置中瞬态气溶胶生成的多职业有限元建模与验证

获取原文
获取原文并翻译 | 示例
       

摘要

The purpose of this research is to study the process of ultrasonic aerosol generation by finite element modeling and validate it by experimental method. This understanding leads to downsize nebulization droplets and improve the drug delivery effectiveness. The finite element model of an ultrasonic nebulizer consists of a cylindrical chamber (filled with liquid), air, and a piezoelectric actuator at the bottom of the chamber. Many physical interactions including piezoelectric structural vibration, pressure acoustic in fluid, two-phase flow and droplet separation are analyzed and simulated. In validation, the ultrasonic nebulizer is attached to Andersen cascade impactor (ACI) with a vacuum pump for classifying the aerosol droplet size. The inductively coupled plasma optical emission spectrometry (ICP-OES) technique is used to determine droplet size distribution. The simulation results have shown that the major distribution of droplet size is in a range of 1.64-2.70 mu m. Accordingly, the experimental results based on the ACI cutoff diameter stages depict that the major volume distribution of droplet size should be in a range of 1.10-3.29 mu m. Submicron droplets (0.56-0.90 mu m) are occurred in the simulation, and are also detected in the experiment at the ACI submicron cutoff diameters at 0.4 mu m and 0.7 mu m. This agreement has proved that the multiphysics model of the ultrasonic nebulizer can predict the size of generated aerosol. The relationship of ultrasonic nebulization parameters could be extended to conceive a new ultrasonic nebulizer design that would achieve submicron droplet size in rendering better drug delivery effectiveness.
机译:本研究的目的是通过实验方法研究有限元建模和验证超声波气溶胶生成的过程。这种理解导致雾化液滴缩小,提高药物递送效率。超声雾化器的有限元模型包括在腔室底部的圆柱形室(填充有液体),空气和压电致动器。分析和模拟包括压电结构振动,流体,两相流和液滴分离的压力声学的许多物理相互作用。在验证中,超声波雾化器与Andersen级联撞击器(ACI)连接,真空泵用于分类气溶胶液滴尺寸。电感耦合等离子体光发射光谱法(ICP-OES)技术用于确定液滴尺寸分布。仿真结果表明,液滴尺寸的主要分布在1.64-2.70 mu m的范围内。因此,基于ACI截止直径级的实验结果描绘了液滴尺寸的主要体积分布应在1.10-3.29 mu m的范围内。在模拟中发生亚微米液滴(0.56-0.90μm),并且在ACI亚微米截止直径的实验中也检测到0.4μm和0.7μm的实验中。本协议证明,超声波雾化器的多体形模型可以预测产生的气溶胶的尺寸。超声波雾化参数的关系可以扩展以构思新的超声波雾化器设计,这将实现亚微米液滴尺寸,以实现更好的药物递送效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号