首页> 外文期刊>Biotechnology Progress >Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment
【24h】

Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment

机译:柳枝derived替代运输液体燃料的能源和排放效益:燃料生命周期评估

获取原文
获取原文并翻译 | 示例
       

摘要

We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)()) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x)() emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.
机译:我们进行了移动性链条或轮到车轮(WTW)分析,以评估2015年至2030年美国运输业中纤维素生物质的能源和排放效益。我们通过使用温室气体,管制排放量和运输能源使用量(GREET)模型估算了与生物燃料生产和轻型车辆(LDV)技术使用相关的生命周期能源消耗和排放。生物燃料生产的分析基于ASPEN Plus模型模拟,该模型模拟了生产燃料乙醇/蛋白质的先进发酵工艺,生产费托柴油(FTD)和二甲醚(DME)的热化学工艺,以及热电联产工厂。联产蒸汽和电力。我们的研究表明,纤维素生物燃料,例如E85(按体积计为85%的乙醇和15%的汽油的混合物),FTD和DME,相对于每吨汽油,可节省大量的石油(66-93%)和化石能源(65-8%)英里为基础。化石燃料使用的减少意味着所有未混合的纤维素生物燃料的温室气体排放量减少了82-87%。在城市地区,我们的研究表明,对于所检查的每种生物燃料生产方案,除一氧化碳(不变)外,几乎所有标准污染物的净减少量均如此。使用E85燃料的常规和混合动力电动汽车可以将总的氧化硫(SO(x)())排放量减少到使用汽油燃料的汽车产生的总排放量的39-43%。通过使用bio-FTD和bio-DME代替柴油,SO(x)()排放量减少到柴油车辆排放的46-58%。比较了六个不同的燃料生产方案。这项研究有力地表明,通过燃气轮机联合循环进行的热电联产是节能和减排的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号