...
首页> 外文期刊>DNA repair >Replication fidelity in E. coli: Differential leading and lagging strand effects for dnaE antimutator alleles
【24h】

Replication fidelity in E. coli: Differential leading and lagging strand effects for dnaE antimutator alleles

机译:在大肠杆菌中的复制保真度:DNA抗算子等位基因的差异引导和滞后链效应

获取原文
获取原文并翻译 | 示例

摘要

DNA Pol III holoenzyme (HE) is the major DNA replicase of Escherichia coli. It is a highly accurate enzyme responsible for simultaneously replicating the leading- and lagging DNA strands. Interestingly, the fidelity of replication for the two DNA strands is unequal, with a higher accuracy for lagging-strand replication. We have previously proposed this higher lagging-strand fidelity results from the more dissociative character of the lagging-strand polymerase. In support of this hypothesis, an E. coli mutant carrying a catalytic DNA polymerase subunit (DnaE915) characterized by decreased processivity yielded an antimutator phenotype (higher fidelity). The present work was undertaken to gain deeper insight into the factors that influence the fidelity of chromosomal DNA replication in E. coli. We used three different dnaE alleles (dnaE915, dttaE911, and dnaE941) that had previously been isolated as antimutators. We confirmed that each of the three dnaE alleles produced significant antimutator effects, but in addition showed that these antimutator effects proved largest for the normally less accurate leading strand. Additionally, in the presence of error-prone DNA polymerases, each of the three dnaE antimutator strains turned into mutators. The combined observations are fully supportive of our model in which the dissociative character of the DNA polymerase is an important determinant of in vivo replication fidelity. In this model, increased dissociation from terminal mismatches (i.e., potential mutations) leads to removal of the mismatches (antimutator effect), but in the presence of error-prone (or translesion) DNA polymerases the abandoned terminal mismatches become targets for error-prone extension (mutator effect). We also propose that these dnaE alleles are promising tools for studying polymerase exchanges at the replication fork.
机译:DNA pol III全酶(HE)是大肠杆菌的主要DNA复制酶。它是一种高精度的酶,负责同时复制前导和滞后的DNA股线。有趣的是,两种DNA链的复制的保真度不等,具有更高的滞后 - 链复制的准确性。我们之前提出了这种较高的滞后束保真度,从滞后 - 链聚合酶的更加分离的特征中产生。为了支持这种假设,携带催化DNA聚合酶亚基(DNA 915)的大肠杆菌突变体,其特征在于降低的处理率,产生了抗血管型表型(更高的保真度)。本作本作的工作进入深入了解影响大肠杆菌染色体DNA复制的保真度的因素。我们使用先前分离为抗血管器的三种不同的DNAE等位基因(DNAE915,DTTAE911和DNAE941)。我们证实,三种DNAE等位基因中的每一个都产生了显着的抗仿效器效应,但另外表明,这些抗算子效应对于通常更准确的前导股来证明了最大的抗算子效应。另外,在易于易于的DNA聚合酶存在下,三种DNAE抗血管菌株中的每一个变成突变体。结合的观察结果完全支持我们的模型,其中DNA聚合酶的分离特征是体内复制保真度的重要决定因素。在该模型中,从终端不匹配(即,潜在突变)的分离增加,以除去不匹配(抗仿效器效应),而是在存在错误的存在(或Translession)DNA聚合酶的存在下,废弃的终端错配成为易于错误的目标延伸(突变效应)。我们还提出,这些DNAE等位基因是在复制叉上学习聚合酶交换的有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号