首页> 外文期刊>Human brain mapping >Data‐driven model optimization for optically pumped magnetometer sensor arrays
【24h】

Data‐driven model optimization for optically pumped magnetometer sensor arrays

机译:光学泵浦磁力计传感器阵列的数据驱动模型优化

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography (MEG). OPMs do not require cryogenic cooling and can therefore be placed directly on the scalp surface. Unlike cryogenic systems, based on a well‐characterised fixed arrays essentially linear in applied flux, OPM devices, based on different physical principles, present new modelling challenges. Here, we outline an empirical Bayesian framework that can be used to compare between and optimise sensor arrays. We perturb the sensor geometry (via simulation) and with analytic model comparison methods estimate the true sensor geometry. The width of these perturbation curves allows us to compare different MEG systems. We test this technique using simulated and real data from SQUID and OPM recordings using head‐casts and scanner‐casts. Finally, we show that given knowledge of underlying brain anatomy, it is possible to estimate the true sensor geometry from the OPM data themselves using a model comparison framework. This implies that the requirement for accurate knowledge of the sensor positions and orientations a priori may be relaxed. As this procedure uses the cortical manifold as spatial support there is no co‐registration procedure or reliance on scalp landmarks.
机译:摘要光学泵浦磁力计(OPMS)已达到灵敏度水平,使其可行的便携式替代传统超导技术进行磁性脑图(MEG)。 OPM不需要低温冷却,因此可以直接放置在头皮表面上。与低温系统不同,基于良好的固定阵列基本上是施加的通量的线性,OPM器件基于不同的物理原理,目前提供了新的建模挑战。在这里,我们概述了一个经验贝叶斯框架,可用于比较和优化传感器阵列。我们扰乱了传感器几何体(通过仿真)和分析模型比较方法估计真正的传感器几何形状。这些扰动曲线的宽度允许我们比较不同的MEG系统。我们使用来自Squid和OPM录制的模拟和实际数据使用头部投射和扫描仪录制来测试此技术。最后,我们表明,鉴于潜在的脑解剖学知识,可以使用模型比较框架来估计从OPM数据本身的真实传感器几何形状。这意味着可以放松对传感器位置和定向的准确知识的要求。由于此过程使用皮质歧管作为空间支持,没有共同登记过程或依赖头皮标志性。

著录项

  • 来源
    《Human brain mapping》 |2019年第15期|共13页
  • 作者单位

    SISTEMIC Engineering FacultyUniversidad de Antioquia UDEA Calle 70 No 52–51Medellín Colombia;

    Wellcome Centre for Human NeuroimagingUCL Institute of Neurology University College LondonLondon UK;

    Wellcome Centre for Human NeuroimagingUCL Institute of Neurology University College LondonLondon UK;

    Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of;

    Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of;

    Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of;

    Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of;

    SISTEMIC Engineering FacultyUniversidad de Antioquia UDEA Calle 70 No 52–51Medellín Colombia;

    Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of;

    Sir Peter Mansfield Imaging Centre School of Physics and AstronomyUniversity of;

    SISTEMIC Engineering FacultyUniversidad de Antioquia UDEA Calle 70 No 52–51Medellín Colombia;

    Wellcome Centre for Human NeuroimagingUCL Institute of Neurology University College LondonLondon UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经病学;
  • 关键词

    beamforming; co‐registration; optically pumped magnetometers; source reconstruction;

    机译:波束成形;共同登记;光学泵浦磁力计;源重建;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号