...
首页> 外文期刊>Hippocampus >Regulation of gamma‐frequency oscillation by feedforward inhibition: A computational modeling study
【24h】

Regulation of gamma‐frequency oscillation by feedforward inhibition: A computational modeling study

机译:馈电抑制的伽马频振荡调节:计算建模研究

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Throughout the brain, reciprocally connected excitatory and inhibitory neurons interact to produce gamma‐frequency oscillations. The emergent gamma rhythm synchronizes local neural activity and helps to select which cells should fire in each cycle. We previously found that such excitation‐inhibition microcircuits, however, have a potentially significant caveat: the frequency of the gamma oscillation and the level of selection (i.e., the percentage of cells that are allowed to fire) vary with the magnitude of the input signal. In networks with varying levels of brain activity, such a feature may produce undesirable instability on the time and spatial structure of the neural signal with a potential for adversely impacting important neural processing mechanisms. Here we propose that feedforward inhibition solves the latter instability problem of the excitation‐inhibition microcircuit. Using computer simulations, we show that the feedforward inhibitory signal reduces the dependence of both the frequency of population oscillation and the level of selection on the magnitude of the input excitation. Such a mechanism can produce stable gamma oscillations with its frequency determined only by the properties of the feedforward network, as observed in the hippocampus. As feedforward and feedback inhibition motifs commonly appear together in the brain, we hypothesize that their interaction underlies a robust implementation of general computational principles of neural processing involved in several cognitive tasks, including the formation of cell assemblies and the routing of information between brain areas.
机译:摘要在整个脑中,往复式连接的兴奋性和抑制性神经元相互作用以产生伽马频率振荡。紧急伽马节奏使局部神经活动同步,并有助于选择每个循环中应射击的细胞。我们之前发现这种激发抑制微电路具有潜在的显着的警告:γ振荡的频率和选择水平(即,允许发射的细胞的百分比)随输入信号的大小而变化。在具有变化级别的大脑活动水平的网络中,这种特征可以在神经信号的时间和空间结构上产生不希望的不稳定性,其具有不利地影响重要的神经加工机构的可能性。在这里,我们提出了前馈抑制来解决激发抑制微电路的后一种不稳定性问题。使用计算机仿真,我们表明前馈抑制信号减少了百分比振荡频率和选择级别的输入激励幅度的依赖性。这样的机构可以产生稳定的伽马振荡,其频率仅通过前馈网络的性质确定,如在海马中所观察到的。作为前馈和反馈抑制基序通常在大脑中一起出现在一起,我们假设它们的互动下潜过几种认知任务中涉及的神经处理的一般计算原则的强大实施,包括形成细胞组件和脑区域之间信息的路由。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号