【24h】

Crystallisation of aspirin via simulated pulmonary surfactant monolayers and lung-specific additives

机译:阿司匹林通过模拟肺表面活性剂单层和肺特异性添加剂结晶

获取原文
获取原文并翻译 | 示例
       

摘要

Pain is a prevalent condition that can have a serious impact upon the socioeconomic function of a population. Numerous methods exist to administer analgesic medication (e.g. aspirin) to the body however inherent drawbacks limit patient acceptability. The inhaled route offers promise to facilitate the administration of medication to the body. Here, we consider the crystallisation behaviour of aspirin, our model therapeutic agent, when in contact with material of relevance to the lung. Thus, our approach aims to better understand the interaction between drug substances and the respiratory tract. Langmuir monolayers composed of a mixed surfactant system were supported on an aqueous subphase containing aspirin (7.5mg/ml). The surfactant film was compressed to either 5mN/m (i.e. inhalation end point) or 50mN/m (i.e. exhalation end point), whilst located within a humid environment for 16h. Standard cooling crystallisation procedures were employed to produce control samples. Antisolvent crystallisation in the presence or absence of lung-specific additives was conducted. All samples were analysed via scanning electron microscopy and X-ray diffraction. Drug-surfactant interactions were confirmed via condensed Langmuir isotherms. Scanning electron microscopy analysis revealed plate-like morphology. The crystallisation route dictated both the crystal habit and particle size distribution. Dominant reflections were the (100) and (200) aspects. The main modes of interaction were hydrogen bonding, hydrophobic associations, and van der Waals forces. Here, we have demonstrated the potential of antisolvent crystallisation with lung-specific additives to achieve control over drug crystal morphology. The approach taken can be applied in respirable formulation engineering. Copyright (c) 2017 John Wiley & Sons, Ltd.
机译:疼痛是一种普遍的条件,可能对人口的社会经济功能产生严重影响。存在许多方法以向身体施用镇痛药物(例如阿司匹林)然而固有的缺点限制患者可接受性。吸入的路线提供承诺,以便于向身体施用药物。在这里,我们考虑阿司匹林,我们的模型治疗剂的结晶行为,当与肺的相关材料接触时。因此,我们的方法旨在更好地理解药物物质与呼吸道之间的相互作用。由混合表面活性剂体系组成的Langmuir单层支持含有阿司匹林(7.5mg / ml)的含水亚相。将表面活性剂膜压缩至5mn / m(即吸入终点)或50mn / m(即呼气终点),同时位于潮湿环境中以16h。使用标准冷却结晶程序来产生对照样品。进行肺特异性添加剂的存在或不存在的抗溶剂结晶。通过扫描电子显微镜和X射线衍射分析所有样品。通过浓缩的Langmuir等温来证实药物 - 表面活性剂相互作用。扫描电子显微镜分析显示板状形态。结晶路线规定了晶体习性和粒度分布。主导反射是(100)和(200)方面。主要的相互作用方式是氢键,疏水性关联和范德华的力。在这里,我们证明了肺特异性添加剂抗溶剂结晶的潜力,以实现对药物晶体形态的控制。采取的方法可用于可吸入的配方工程。版权所有(c)2017 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号