...
首页> 外文期刊>Transactions of The Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B >A coupled methane/air flow model for coal gas drainage: Model development and finite-difference solution
【24h】

A coupled methane/air flow model for coal gas drainage: Model development and finite-difference solution

机译:煤气排水的耦合甲烷/气流模型:模型开发和有限差分解决方案

获取原文
获取原文并翻译 | 示例
           

摘要

Gas drainage through underground boreholes is intensively associated to safety mining and clean energy capture. The key factor restricting the improvement of underground gas drainage is air leakage around borehole, which always leads to the rapid decay of drained gas concentration and methane production rate. Although tremendous work has been implemented on coal-gas interactions, few studies address the air leakage phenomenon in underground gas drainage operations. This work first presents a coupled compositional flow model by integrating the methane-air mixture flow in fracture, methane flow within the matrix, mass transfer between fractures and matrixes, and permeability evolution induced by gas depletion. Then, a numerical model and a simulator are developed using the finite difference method (FDM) to solve the compositional model and are successfully validated against two sets of in situ gas drainage data. Subsequently, the effect of parametric variations on gas drainage performance is quantified through a series of simulations. The simulated results reveal that: (1) A higher drainage pressure corresponds to a higher drained gas concentration and a longer time for air leakage into the borehole; at the beginning of drainage, the methane flow rate increases linearly with the decrease of drainage pressure. (2)The efficiency of lowering the drainage pressure to enhance methane production is getting weaker with the drainage pressure decreasing. Lowering drainage pressure will transfer more air to the drainage borehole, decrease the concentration of drained gas and pure methane production. Therefore the drainage pressure should be optimized by comprehensively balancing methane production, gas concentration and costs; (3) Increasing the sealing area on the coal wall around the borehole will prevent air from flowing into coal, and linearly promote the concentration of drained gas and methane production; (4) A longer borehole sealing length corresponds to a higher concentration of drained gas and a slower decay of methane production rate, while the increase of drained methane flowrate results from increasing borehole sealing length is non-linear, and an optimal borehole sealing length could be evaluated using the proposed model and simulator to promote the gas extraction efficiency. This coupled model and the numerical results improve the understanding of the methane-air flow behaviors and air leakage phenomenon in coal during underground gas drainage, and suggest a powerful tool for evaluating the drainage gas production objectively and optimizing the gas extraction system scientifically. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:通过地下钻孔的气体排水与安全挖掘和清洁能量捕获密集。限制地下储气排水的改善的关键因素是钻孔周围的漏气,这始终导致排出的气体浓度和甲烷生产速率的快速衰减。虽然煤气相互作用实施了巨大的工作,但很少有研究解决了地下燃气排水作业中的漏气现象。本作品首先通过将裂缝中的甲烷 - 空气混合物流体,甲烷流量在基质内的甲烷流动,裂缝和基质之间的质量传递,以及通过气体耗尽诱导的渗透性进化来呈现偶联的成分流动模型。然后,使用有限差分法(FDM)开发了数值模型和模拟器来解决组合模型,并成功地针对两组原位燃气排水数据验证。随后,通过一系列模拟量化了参数变化对气体排水性能的影响。模拟结果表明:(1)较高的排水压力对应于更高的排水气体浓度和较长的空气泄漏到钻孔中的时间;在排水开始时,甲烷流量随着排水压力的降低而导致线性增加。 (2)降低排水压力以增强甲烷生产的效率正在越来越弱,引流压力降低。降低排水压力将使更多空气转移到排水钻孔中,降低排水的气体和纯甲烷的浓度。因此,通过全面平衡甲烷的生产,气体浓度和成本,应优化排水压力; (3)增加井孔周围煤墙上的密封面积将防止空气流入煤炭,并线性促进排出的气体和甲烷生产的浓度; (4)较长的钻孔密封长度对应于较高浓度的排水气体和甲烷生产速率的较慢衰减,而排出的甲烷流量的增加是由于增加钻孔密封长度是非线性的,并且最佳的钻孔密封长度可以使用所提出的模型和模拟器进行评估,以促进气体提取效率。该耦合模型和数值结果改善了地下燃气排水期间煤中甲烷 - 空气流动行为和空气泄漏现象的理解,并提出了一种强大的工具,用于客观地评估排水气体生产,并科学优化气体提取系统。 (c)2020化学工程师机构。 elsevier b.v出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号