首页> 外文期刊>Theoretical and Experimental Plant Physiology >Effects of Small-World Rewiring Probability and Noisy Synaptic Conductivity on Slow Waves: Cortical Network
【24h】

Effects of Small-World Rewiring Probability and Noisy Synaptic Conductivity on Slow Waves: Cortical Network

机译:小世界重新加速概率与嘈杂突触电导率对慢波的影响:皮质网络

获取原文
获取原文并翻译 | 示例
           

摘要

>Physiological rhythms play a critical role in the functional development of living beings. Many biological functions are executed with an interaction of rhythms produced by internal characteristics of scores of cells. While synchronized oscillations may be associated with normal brain functions, anomalies in these oscillations may cause or relate the emergence of some neurological or neuropsychological pathologies. This study was designed to investigate the effects of topological structure and synaptic conductivity noise on the spatial synchronization and temporal rhythmicity of the waves generated by cells in the network. Because of holding the ability of clustering and randomizing with change of parameters, small-world (SW) network topology was chosen. The oscillatory activity of network was tried out by manipulating an insulated SW, cortical network model whose morphology is very close to real world. According to the obtained results, it was observed that at the optimal probabilistic rates of conductivity noise and rewiring of SW, powerful synchronized oscillatory small waves are generated in relation to the internal dynamics of cells, which are in line with the network’s input. These two parameters were observed to be quite effective on the excitation-inhibition balance of the network. Accordingly, it may be suggested that the topological dynamics of SW and noisy synaptic conductivity may be associated with the normal and abnormal development of neurobiological structure.
机译: >生理学节奏在其中发挥着关键作用生物的功能发展。通过细胞分数内部特征产生的节奏的相互作用来执行许多生物学功能。虽然同步振荡可能与正常的脑功能相关,但这些振荡中的异常可能导致或涉及一些神经学或神经心理学病理的出现。本研究旨在研究拓扑结构和突触电导率噪声对网络中电池产生的波浪的空间同步和时间节律的影响。由于持有聚类和随机化随着参数的变化而随机化,因此选择了小世界(SW)网络拓扑。通过操纵绝缘的SW,皮质网络模型来试验网络的振荡活动,其形态学非常接近现实世界。根据所得的结果,观察到,在对SW的电导率噪声和重新启动的最佳概率率下,强大的同步振荡小波是关于电池的内部动态产生的,这与网络的输入一致。观察到这两个参数对网络的激励抑制余额非常有效。因此,可能表明SW和嘈杂的突触导电性的拓扑动态可能与神经生物学结构的正常和异常发育相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号