首页> 外文期刊>Tissue engineering, Part A >Harnessing the Osteogenicity of In Vitro Stem Cell-Derived Mineralized Extracellular Matrix as 3D Biotemplate to Guide Bone Regeneration
【24h】

Harnessing the Osteogenicity of In Vitro Stem Cell-Derived Mineralized Extracellular Matrix as 3D Biotemplate to Guide Bone Regeneration

机译:利用体外干细胞衍生的矿化细胞外基质的骨质发生性作为3D Biotemplate引导骨再生

获取原文
获取原文并翻译 | 示例
       

摘要

Advanced biomaterials that are capable of guiding robust bone regeneration are highly demanded for translational therapy of bone defects or bone augmentation in clinics. One of the strategic approaches is to produce tissue engineering (TE) constructs that mediate bone regeneration by recapitulating the natural bone formation or healing process. In this study, we aimed at producing devitalized mineralized carriers with augmented bone forming capacity via a modified culture protocol (i.e., culture conditions with high calcium and/or phosphate concentrations) that first promotes cell growth and, subsequently, mineralized extracellular matrix (ECM) deposition by human periosteum-derived osteoprogenitor cells (hPDCs) on additive manufactured three-dimensional (3D) porous titanium (Ti)-based scaffolds. Qualitative and quantitative analysis was performed to characterize the physicochemical properties of the produced devitalized mineralized carriers, as well as their effects as carriers on in vitro cell growth and osteochondrogenic differentiation of hPDCs under a perfusion bioreactor culture set-up. The results showed that the modified culture protocol was useful to produce devitalized mineralized carriers with different amount, distribution, composition, and morphology of mineralized matrix that resembled hydroxyapatite, and exhibited different Ca2+ release kinetics, distinct human bone morphogenetic protein (hBMP)-2, human vascular endothelial growth factor (hVEGF) proteins, and collagen contents. The produced devitalized mineralized carriers supported 3D growth of hPDCs, with minor osteochondrogenic differentiation effects under the perfusion bioreactor culture condition. Subcutaneous implantation of hPDC-seeded devitalized mineralized carriers in athymic nude rats showed nearly five-fold augmentation in the ectopic bone-forming capacity, with no bone induction obtained for unseeded, devitalized mineralized carriers and plain Ti scaffolds. Implantation of devitalized mineralized carriers in critical-sized calvarial defects resulted in encouraging defect bridging as compared with limited defect bridging by plain Ti scaffolds or in empty defects. This defect bridging was not enhanced by implanting hPDC-seeded devitalized mineralized carriers. In conclusion, the investigated modified culture protocol was useful to produce devitalized mineralized carriers with augmented bone-forming capacity, which potentially could aid bone repair or augmentation in clinics.
机译:能够引导强大的骨再生的先进生物材料对于临床中的骨缺陷或骨骼增强的翻译治疗。其中一种战略方法是生产通过重新携带天然骨形成或愈合过程来制造组织工程(TE)构建体,其介导骨再生。在这项研究中,我们旨在通过修饰的培养方案(即具有高钙和/或磷酸盐浓度的培养条件)的增强骨形成能力产生可生长的矿化载体,其首先促进细胞生长,随后,矿化细胞外基质(ECM)通过人肝源性溶解剂细胞(HPDC)沉积添加剂制造的三维(3D)多孔钛(Ti)的支架。进行定性和定量分析以表征产生的可生长的矿化载体的物理化学性质,以及它们在灌注生物反应器培养物中的体外细胞生长和HPDC的体外细胞生长和骨质色通孔分化的携带者的效果。结果表明,改性培养方案可用于生产具有不同矿化基质的不同量,分布,组成和形态的生长型矿化载体,其具有类似于羟基磷灰石的不同CA2 +释放动力学,不同的人骨形态发生蛋白(HBMP)-2,人血管内皮生长因子(HVEGF)蛋白和胶原含量。所产生的可生长化矿化载体支持HPDC的3D生长,在灌注生物反应器培养条件下具有轻微的骨质化分化效应。在无甲状腺裸鼠中HPDC种植的活化型携带者的皮下植入表现出在异位骨形成容量中的近5倍的增强,没有针对无机,可生长的矿化载体和普通Ti支架的骨感应。在临界大小的颅骨缺陷中植入可生长的矿化载体导致令人振奋的缺陷桥接,与普通Ti支架或空缺缺陷的限制缺陷桥接相比。通过植入HPDC种子的可生长的矿化载体,不会增强这种缺陷桥接。总之,研究的改良培养方案可用于生产具有增强骨形成能力的可生育矿化载体,这可能有助于临床修复或增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号