...
首页> 外文期刊>Biotechnology Progress >Enteric bacterial catalysts for fuel ethanol production [Review]
【24h】

Enteric bacterial catalysts for fuel ethanol production [Review]

机译:用于燃料乙醇生产的肠细菌催化剂[综述]

获取原文
获取原文并翻译 | 示例

摘要

The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part from the complexity of the substrate and the biological limitations of the catalyst. Our work at the University of Florida has focused primarily on the genetic engineering of Enteric bacteria using genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase. These two genes have been assembled into a portable ethanol production cassette, the PET operon, and integrated into the chromosome of Escherichia coli B for use with hemicellulose-derived syrups. The resulting strain, KO11, produces ethanol efficiently from all hexose and pentose sugars present in the polymers of hemicellulose. By using the same approach, we integrated the PET operon into the chromosome of Klebsiella oxytoca to produce strain P2 for use in the simultaneous saccharification and fermentation (SSF) process for cellulose. Strain P2 has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. Recently, the ability to produce and secrete high levels of endoglucanase has also been added to strain P2, further reducing the requirement for fungal cellulase. The general approach for the genetic engineering of new biocatalysts using the PET operon has been most successful with Enteric bacteria but was also extended to Gram positive bacteria, which have other useful traits for lignocellulose conversion. Many opportunities remain for further improvements in these biocatalysts as we proceed toward the development of single organisms that can be used for the efficient fermentation of both hemicellulosic and cellulosic substrates.
机译:该技术可用于从可再生木质纤维素生物质生产燃料乙醇。当前的挑战是将各种工艺方案组合成一个商业企业,并开始逐步改进的任务。目前木质纤维素的工艺设计比谷物制乙醇工艺复杂得多。这种复杂性部分是由于底物的复杂性和催化剂的生物学限制所致。我们在佛罗里达大学的工作主要集中在利用运动发酵单胞菌丙酮酸丙酮酸脱羧酶和酒精脱氢酶编码基因进行肠细菌的基因工程。这两个基因已组装到便携式乙醇生产盒中(PET操纵子),并整合到大肠杆菌B的染色体中,可与半纤维素衍生的糖浆一起使用。所得菌株KO11从半纤维素聚合物中存在的所有己糖和戊糖中高效生产乙醇。通过使用相同的方法,我们将PET操纵子整合到产酸克雷伯菌的染色体中,以产生菌株P2,用于纤维素的同时糖化和发酵(SSF)过程。 P2菌株具有发酵纤维二糖和纤维三糖的天然能力,从而消除了对一类纤维素酶的需要。最近,产生和分泌高水平内切葡聚糖酶的能力也被添加到菌株P2中,进一步降低了对真菌纤维素酶的需求。使用PET操纵子对新生物催化剂进行基因工程的一般方法在肠细菌中最成功,但也扩展到革兰氏阳性细菌,革兰氏阳性细菌具有木质纤维素转化的其他有用特性。随着我们朝着可用于半纤维素和纤维素底物有效发酵的单一生物体发展的方向发展,这些生物催化剂的进一步改进仍有许多机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号