首页> 外文期刊>The European physical journal: Special topics >Photoexcitation in two-dimensional topological insulators: Generating and controlling electron wavepackets in Quantum Spin Hall systems
【24h】

Photoexcitation in two-dimensional topological insulators: Generating and controlling electron wavepackets in Quantum Spin Hall systems

机译:二维拓扑绝缘子中的运动透镜:Quantum Spin Hall系统中的电子波丝袋产生和控制电子波形

获取原文
获取原文并翻译 | 示例
           

摘要

One of the most fascinating challenges in Physics is the realization of an electron-based counterpart of quantum optics, which requires the capability to generate and control single electron wave packets. The edge states of quantum spin Hall (QSH) systems, i.e., two-dimensional (2D) topological insulators realized in HgTe/CdTe and InAs/GaSb quantum wells, may turn the tide in the field, as they do not require the magnetic field that limits the implementations based on quantum Hall effect. However, the band structure of these topological states, described by a massless Dirac fermion Hamiltonian, prevents electron photoexcitation via the customary vertical electric dipole transitions of conventional optoelectronics. So far, proposals to overcome this problem are based on magnetic dipole transitions induced via Zeeman coupling by circularly polarised radiation, and are limited by the g-factor. Alternatively, optical transitions can be induced from the edge states to the bulk states, which are not topologically protected though.Here we show that an electric pulse, localized in space and/or time and applied at a QSH edge, can photoexcite electron wavepackets by intra-branch electrical transitions, without invoking the bulk states or the Zeeman coupling. Such wavepackets are spin-polarised and propagate in opposite directions, with a density profile that is independent of the initial equilibrium temperature and that does not exhibit dispersion, as a result of the linearity of the spectrum and of the chiral anomaly characterising massless Dirac electrons. We also investigate the photoexcited energy distribution and show how, under appropriate circumstances, minimal excitations (Levitons) are generated. Furthermore, we show that the presence of a Rashba spin-orbit coupling can be exploited to tailor the shape of photoexcited wavepackets. Possible experimental realizations are also discussed.
机译:物理学中最令人着迷的挑战之一是实现量子光学基于电子的对应物,这需要产生和控制单个电子波包的能力。 Quantum Spin Hall(QSH)系统的边缘状态,即在HGTE / CDTE和INAS / GASB量子阱中实现的二维(2D)拓扑绝缘体,可以转动该领域的潮汐,因为它们不需要磁场这限制了基于量子霍尔效应的实现。然而,这些拓扑状态的频带结构由无抽质的Dirac Fermion Hamiltonian描述,防止了通过传统光电子的常规垂直电偶极转换的电子光筛。到目前为止,克服这个问题的建议是基于通过圆偏振辐射通过塞曼联轴器引起的磁偶极转变,并受到G型的限制。或者,可以从边缘状态诱导光学转变到散装状态,其不是拓扑保护的。我们示出了电脉冲,在空间和/或时间内局部局限并在QSH边缘施加,可以通过分支机内电动转换,不调用散装状态或塞曼耦合。这种波袋是旋偏偏振的并且在相反的方向上传播,密度曲线与初始平衡温度无关,并且由于光谱的线性和表征麻空的狄拉科电子的线性度而没有表现出分散的。我们还调查了光透明的能量分布,并在适当情况下显示了如何产生最小激励(Levitons)。此外,我们表明可以利用Rashba旋转轨道耦合的存在来定制光屏蔽波袋的形状。还讨论了可能的实验性实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号