...
首页> 外文期刊>The Astrophysical Journal. Letters >EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE
【24h】

EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE

机译:磁力流体动力学湍流数值模拟中的扩展规律规律

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories ofMHDturbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales.Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.
机译:磁化湍流在天体物理系统中普遍存在,在那里它臭名昭着跨越广泛的空间鳞片。 Mhdturnence的现象理论描述了尺度惯性范围内的湍流波动的自我相似动态。数值模拟用于引导和测试这些理论。然而,目前可用的计算能力将模拟限制为雷诺数,这些数字明显小于天体物理设置中的数字。为了提高计算效率,因此,探测更大范围的尺度,通常考虑到现场引导的MHD湍流的基本各向异性,梯度在场平行方向上较慢。然后通过采用减少的MHD方程来优化模拟,并放松现场平行的数字分辨率。在这项工作中,我们探讨了不同的可能性。我们建议存在一定的数量,这对雷诺数非常稳定。作为图示,我们研究了MHD湍流中的磁性和速度波动之间的对准角度,测量为两个专门构造的结构功能的比率。我们发现,这种比率的缩放可以令人惊讶地扩展到相对低的雷诺数的方案中。然而,当模拟中的耗散范围被溶解时,延长的缩放容易被破坏。因此,采用数值优化方法即可导致MHD湍流物理学的杂散数值效果和错误表示,这反过来可能影响我们在天体物理系统中操作的正确性机制的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号