首页> 外文学位 >Collisionless Plasma Turbulence: Insights from Magnetohydrodynamic and Hall Magnetohydrodynamic Simulations and Observations of the Earth's Magnetosphere.
【24h】

Collisionless Plasma Turbulence: Insights from Magnetohydrodynamic and Hall Magnetohydrodynamic Simulations and Observations of the Earth's Magnetosphere.

机译:无碰撞等离子体湍流:磁流体动力学和霍尔磁流体动力学模拟和地球磁层观测的见解。

获取原文
获取原文并翻译 | 示例

摘要

Turbulence is a ubiquitous phenomenon that occurs throughout the universe, in both neutral fluids and plasmas. For collisionless plasmas, kinetic effects, which alter the nonlinear dynamics and result in small-scale dissipation, are still not well understood in the context of turbulence. This work uses direct numerical simulations (DNS) and observations of Earth's magnetosphere to study plasma turbulence.;Long-time relaxation in magnetohydrodynamic (MHD) turbulence is examined using DNS with particular focus on the role of magnetic and cross helicity and symmetries of the initial configurations. When strong symmetries are absent or broken through perturbations, flows evolve towards states predicted by statistical mechanics with an energy minimization principle, which features two main regimes; one magnetic helicity dominated and one with quasi-equipartition of kinetic and magnetic energy. The role of the Hall effect, which contributes to the dynamics of collisionless plasmas, is also explored numerically. At scales below the ion inertial length, a transition to a magnetically dominated state, associated with advection becoming subdominant to dissipation, occurs. Real-space current, vorticity, and electric fields are examined. Strong current structures are associated with alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable.;Turbulence within bursty bulk flow braking events, thought to be associated with near-Earth magnetotail reconnection, are then studied using the THEMIS spacecraft. It is proposed that strong field-aligned currents associated with turbulent intermittency destabilize into double layers, providing a collisionless dissipation mechanism for the turbulence. Plasma waves may also radiate from the region, removing energy from the turbulence and potentially depositing it in the aurora.;Finally, evidence for turbulence in the Kelvin-Helmholtz instability (KHI) on the Earth's magnetopause is found using data from the Magnetospheric Multiscale (MMS) mission. With MMS, spatial properties, including spatial intermittency and anisotropy, can be examined along with temporal properties and ion and electron velocity spectra can be examined observationally into the kinetic scales. Quasi-two-dimensional anisotropy perpendicular to the magnetic field is found. Field-aligned current instabilities and wave radiation may also be relevant in the KHI.
机译:湍流是一种普遍存在的现象,在中性流体和等离子体中都会发生在整个宇宙中。对于无碰撞等离子体,在湍流的背景下仍然无法很好地理解动力学效应,这些动力学效应改变了非线性动力学并导致了小规模的耗散。这项工作使用直接数值模拟(DNS)和对地球磁层的观测来研究等离子体湍流;;使用DNS检查了磁流体动力学(MHD)湍流中的长时间弛豫,特别着重于初始磁和交叉螺旋和对称性的作用配置。当不存在强对称性或由于微扰而破坏对称性时,流量会朝着统计力学所预测的具有能量最小化原理的状态发展,该原理具有两个主要机制:一种是磁性螺旋结构,另一种是动能和磁能的准等分。还通过数值研究了霍尔效应的作用,该作用有助于无碰撞等离子体的动力学。在低于离子惯性长度的尺度上,会发生向磁支配状态的过渡,这与对流变得主要耗散有关。检查实际空间电流,涡度和电场。强电流结构与电流和磁场之间的对准有关,这在无碰撞等离子体中可能很重要,在等离子中,对准磁场的电流可能不稳定。;突发大流量制动事件中的湍流,被认为与近地磁尾重新连接有关;然后使用THEMIS航天器进行研究。提出了与湍流间歇性相关的强场对准电流不稳定成双层,为湍流提供了无碰撞耗散机制。等离子体波也可能从该区域辐射出来,从而从湍流中去除能量,并可能将其沉积在极光中。最后,利用磁层多尺度(Magnetospheric Multiscale)( MMS)任务。使用MMS,可以同时检查空间特性(包括空间间歇性和各向异性)以及时间特性,并且可以观察到动力学尺度来观察离子和电子速度谱。发现垂直于磁场的准二维各向异性。电场对准的电流不稳定性和波辐射也可能与KHI有关。

著录项

  • 作者

    Stawarz, Julia E.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Plasma physics.;Astrophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号