...
首页> 外文期刊>Ultrasonics >Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening
【24h】

Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening

机译:超声波储层薄泡液层超声波型磁场的理论与实验研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ultrasonic cavitation peening is a potential surface enhancement process. During this process a high input power is necessary to obtain an effective process result. A small gap, usually less than 1 mm, between the sonotrode tip and the treated surface is also required to avoid substantial energy loss. Due to the high vibration of the sonotrode, many cavitation bubbles are generated, forming a thin bubbly liquid layer in the small gap. The cavitation bubbles in the layer seriously disturb the sound wave propagation and interact with each other. The disturbances and interactions change the intensity and the spatial distribution of cavitation bubbles, resulting in the different interactions between cavitation bubbles and workpiece surfaces. The variations of the interactions cause different surface properties of the workpieces after ultrasonic cavitation peening. Therefore, quantifying the ultrasound field in different conditions is of great important to improve the ultrasonic cavitation peening process. A current model of the sound propagation in the bubbly liquid was already developed but did not include the bubble interactions. In this work, the bubble interactions are taken into account to improve the current model. The calculated results of the sound field with the improved model are validated by sonochemiluminescence experiments in various standoff distances and vibration amplitudes. Both of the experimental and the calculated results show that the highest sound pressure is generated when the vibration amplitude is around 25 mu m. The strongest cavitation intensity occurs at the gap width of 0.5-0.7 mm.
机译:超声波空化喷丸是一种潜在的表面增强过程。在此过程中,需要高输入功率以获得有效的过程结果。在超声波尖端和处理表面之间也需要小的间隙,通常小于1mm,以避免大量能量损失。由于超声波的高振动,产生了许多空化气泡,在小间隙中形成薄的气泡液层。层中的空化泡沫严重扰乱声波传播并彼此相互作用。扰动和相互作用改变了空化气泡的强度和空间分布,导致空化气泡和工件表面之间的不同相互作用。相互作用的变化导致超声波空化喷丸后工件的不同表面特性。因此,在不同条件下量化超声区域对于改善超声波空化喷丸过程非常重要。已经开发了起泡液中声音传播的电流模型,但不包括气泡相互作用。在这项工作中,考虑到泡沫相互作用以改善当前模型。具有改进模型的声场的计算结果由各种支座距离和振动幅度的SonoChemil发光实验验证。两者的实验和计算结果表明,当振动幅度约为25μm时产生最高的声压。最强的空化强度发生在间隙宽度为0.5-0.7mm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号