首页> 外文期刊>Ultrasonics sonochemistry >Nonlinear power loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damping at various excitation pressures
【24h】

Nonlinear power loss in the oscillations of coated and uncoated bubbles: Role of thermal, radiation and encapsulating shell damping at various excitation pressures

机译:涂覆和未涂覆气泡振荡中的非线性功率损耗:热,辐射和封装壳体阻尼在各种激励压力下的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This study presents the fundamental equations governing the pressure dependent disipation mechanisms in the oscillations of coated bubbles. A simple generalized model (GM) for coated bubbles accounting for the effect of compressibility of the liquid is presented. The GM was then coupled with nonlinear ODEs that account for the thermal effects. Starting with mass and momentum conservation equations for a bubbly liquid and using the GM, nonlinear pressure dependent terms were derived for power dissipation due to thermal damping (Td), radiation damping (Rd) and dissipation due to the viscosity of liquid (Ld) and coating (Cd). The pressure dependence of the dissipation mechanisms of the coated bubble have been analyzed. The dissipated energies were solved for uncoated and coated 2-20 mu m in bubbles over a frequency range of 0.25f(r) - 2.5f(r) (f(r) is the bubble resonance) and for various acoustic pressures (1 kPa-300 kPa). Thermal effects were examined for air and C3F8 gas cores. In the case of air bubbles, as pressure increases, the linear thermal model looses accuracy and accurate modeling requires inclusion of the full thermal model. However, for coated C3F8 bubbles of diameter 1-8 mu m, which are typically used in medical ultrasound, thermal effects maybe neglected even at higher pressures. For uncoated bubbles, when pressure increases, the contributions of Rd grow faster and become the dominant damping mechanism for pressure dependent resonance frequencies (e.g. fundamental and super harmonic resonances). For coated bubbles, Cd is the strongest damping mechanism. As pressure increases, Rd contributes more to damping compared to Ld and Td. For coated bubbles, the often neglected compressibility of the liquid has a strong effect on the oscillations and should be incorporated in models. We show that the scattering to damping ratio (STDR), a measure of the effectiveness of the bubble as contrast agent, is pressure dependent and can be maximized for specific frequency ranges and pressures.
机译:本研究介绍了涂层泡沫振荡中压力依赖性丢弃机制的基本方程。提出了一种简单的广义模型(GM)用于涂覆的气泡核对液体可压缩性的效果。然后转基因GM与非线性杂散结合,该非线性杂散算用于热效应。从用于泡泡液和使用GM的质量和动量保护方程开始,由于热阻(TD),辐射阻尼(RD)和由于液体(LD)的粘度和耗散而导致非线性压力依赖性术语。涂层(CD)。已经分析了涂覆泡沫的耗散机制的压力依赖性。在0.25f(r) - 2.5f(r)(f(r)是气泡共振)的频率范围内的未涂覆并在2-20μmm m m m m m m涂覆散发的能量。(f(r)是气泡共振)和各种声学压力(1kPa -300 kpa)。检查空气和C3F8气体核心的热效应。在气泡的情况下,随着压力的增加,线性热模型损失精度,准确的建模需要包含全热模型。然而,对于直径1-8μm的涂覆的C3F8气泡,其通常用于医学超声,即使在较高的压力下也可能被忽略的热效应。对于未涂布的气泡,当压力增加时,RD生长的贡献更快,成为压力依赖性谐振频率的主要阻尼机构(例如,基本和超级谐波共振)。对于涂层气泡,CD是最强的阻尼机构。随着压力的增加,与LD和TD相比,RD有助于阻尼。对于涂覆的气泡,液体的经常被忽略的可压缩性对振荡具有很强的影响,并且应该在模型中结合。我们表明,散射到阻尼比(STDR),泡沫的有效性的量度为造影剂,是压力依赖性,并且可以最大化特定频率范围和压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号