首页> 外文期刊>Progress in Artificial Intelligence >Carbon Transfer from the Host Diatom Enables Fast Growth and High Rate of N-2 Fixation by Symbiotic Heterocystous Cyanobacteria
【24h】

Carbon Transfer from the Host Diatom Enables Fast Growth and High Rate of N-2 Fixation by Symbiotic Heterocystous Cyanobacteria

机译:来自宿主硅藻的碳转移能够通过共生杂杂杂体蓝菌能够快速生长和高效的N-2固定率

获取原文
获取原文并翻译 | 示例
           

摘要

Diatom-diazotroph associations (DDAs) are symbioses where trichome-forming cyanobacteria support the host diatom with fixed nitrogen through dinitrogen (N-2) fixation. It is inferred that the growth of the trichomes is also supported by the host, but the support mechanism has not been fully quantified. Here, we develop a coarse-grained, cellular model of the symbiosis between Hemiaulus and Richelia (one of the major DDAs), which shows that carbon (C) transfer from the diatom enables a faster growth and N-2 fixation rate by the trichomes. The model predicts that the rate of N-2 fixation is 5.5 times that of the hypothetical case without nitrogen (N) transfer to the host diatom. The model estimates that 25% of fixed C from the host diatom is transferred to the symbiotic trichomes to support the high rate of N-2 fixation. In turn, 82% of N fixed by the trichomes ends up in the host. Modeled C fixation from the vegetative cells in the trichomes supports only one-third of their total C needs. Even if we ignore the C cost for N-2 fixation and for N transfer to the host, the total C cost of the trichomes is higher than the C supply by their own photosynthesis. Having more trichomes in a single host diatom decreases the demand for N-2 fixation per trichome and thus decreases their cost of C. However, even with five trichomes, which is about the highest observed for Hemiaulus and Richelia symbiosis, the model still predicts a significant C transfer from the diatom host. These results help quantitatively explain the observed high rates of growth and N-2 fixation in symbiotic trichomes relative to other aquatic diazotrophs.
机译:硅藻 - 二聚噬细胞关联(DDAs)是Symbiose,其中形成毛状体形成蓝藻,通过二氮(N-2)固定来支持宿主硅藻。推断粒子的生长也由宿主支撑,但支持机制尚未完全量化。在这里,我们开发了粗粒,粗粒细胞模型(其中Richelia(其中一个主要DDA)之间的共生模型,这表明来自硅藻的碳(C)转移能够通过胎儿的增长更快和N-2固定率。该模型预测N-2固定的速率是没有氮气(n)转移到宿主硅藻的假设情况的5.5倍。该模型估计,从宿主硅藻中25%的固定C转移到共生颗粒以支持高速率的N-2固定率。反过来,毛皮固定的82%的N固定在宿主中。从毛状体中的营养细胞中的模型C固定仅支持其总C需求的三分之一。即使我们忽略了N-2固定的C成本和N转移到宿主,幼粒的总C成本高于其自身光合作用的C供应。在单宿主硅藻中具有更多的毛状体可降低每滴毛组的N-2固定的需求,从而降低其C的成本。然而,即使有五个毛状体,这是关于对血清和度雷西氏症的最高观察到的,该模型仍然预测从硅藻宿主中显着的C转移。这些结果有助于定量解释相对于其他水生形二曲线的共生毛体中观察到的高等生长和N-2固定。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号