首页> 外文期刊>Protein Science: A Publication of the Protein Society >Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIV‐1 reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine
【24h】

Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIV‐1 reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine

机译:通过HIV-1逆转录酶的结构见解识别核苷逆转录酶抑制剂:第一晶体结构具有逆转录酶的第一晶体结构和Lamivudine和Emtrickaine的活性三磷酸酯形式

获取原文
获取原文并翻译 | 示例
       

摘要

ABSTRACT The retrovirus HIV‐1 has been a major health issue since its discovery in the early 80s. In 2017, over 37 million people were infected with HIV‐1, of which 1.8 million were new infections that year. Currently, the most successful treatment regimen is the highly active antiretroviral therapy (HAART), which consists of a combination of three to four of the current 26 FDA‐approved HIV‐1 drugs. Half of these drugs target the reverse transcriptase (RT) enzyme that is essential for viral replication. One class of RT inhibitors is nucleoside reverse transcriptase inhibitors (NRTIs), a crucial component of the HAART. Once incorporated into DNA, NRTIs function as a chain terminator to stop viral DNA replication. Unfortunately, treatment with NRTIs is sometimes linked to toxicity caused by off‐target side effects. NRTIs may also target the replicative human mitochondrial DNA polymerase (Pol γ), causing long‐term severe drug toxicity. The goal of this work is to understand the discrimination mechanism of different NRTI analogues by RT. Crystal structures and kinetic experiments are essential for the rational design of new molecules that are able to bind selectively to RT and not Pol γ. Structural comparison of NRTI‐binding modes with both RT and Pol γ enzymes highlights key amino acids that are responsible for the difference in affinity of these drugs to their targets. Therefore, the long‐term goal of this research is to develop safer, next generation therapeutics that can overcome off‐target toxicity.
机译:摘要自80年代初期发现以来,逆转录病毒HIV-1是一个主要的健康问题。 2017年,超过3700万人感染了HIV-1,其中180万是当年的新感染。目前,最成功的治疗方案是高度活跃的抗逆转录病毒治疗(HAART),其组成了三到四个目前的26个FDA批准的HIV-1药物。这些药物中的一半靶向逆转录酶(RT)酶,这对于病毒复制至关重要。一类RT抑制剂是核苷逆转录酶抑制剂(NRTIS),HAART的关键组分。一旦掺入DNA中,NRTIS用作链终止剂以阻止病毒DNA复制。不幸的是,NRTI的治疗有时与偏离目标副作用引起的毒性有关。 NRTIS还可以靶向重复的人体线粒体DNA聚合酶(POLγ),导致长期严重的药物毒性。这项工作的目标是了解RT的不同NRTI类似物的歧视机制。晶体结构和动力学实验对于能够选择性地结合到室温而不是POLγ的新分子的合理设计是必不可少的。 NRTI结合模式与RT和POLγ酶的结构比较突出了对这些药物对其靶标的差异的关键氨基酸。因此,这项研究的长期目标是发展更安全,下一代治疗方法,可以克服靶向毒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号