首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part P. Journal of Sports Engineering and Technology >Robust tracking of bicycle crank angles using magneto-inertial sensors, domain constraints and functional frame alignment techniques
【24h】

Robust tracking of bicycle crank angles using magneto-inertial sensors, domain constraints and functional frame alignment techniques

机译:使用磁惯性传感器,域约束和功能帧对准技术鲁棒跟踪自行车曲柄角度

获取原文
获取原文并翻译 | 示例
           

摘要

The crank angle is an important outcome in biomechanical analyses of cycling. Wireless inertial and magnetic measurement systems are unobtrusive and have the potential to measure crank angles more advantageously than ergometers, encoders or cameras. However, magnetic field disturbances and large centripetal accelerations during pedaling introduce tracking errors. The aim of this study was to validate two magnetometer-free sensor-to-body frame alignment methods for tracking the bicycle crank angle using wireless inertial and magnetic measurement systems. A passive complementary filter is presented for tracking the crank angle using an inertial and magnetic measurement system mounted on the bicycle frame and another on the crank arm. Sensor-to-body frame alignment is performed for both inertial and magnetic measurement systems using functional calibration techniques that do not require magnetometer measurements. The filter also performs dynamic tracking of the crank arm inertial and magnetic measurement system without magnetometer data by exploiting domain constraints and compensating for centripetal accelerations. The filter was validated at a slow, medium and fast pedaling cadence using stereophotogrammetry. The filter produced absolute errors of 1.3°?±?0.9° or less in all three tests. In contrast, large and variable absolute errors (11.6°?±?7.6°, 14.2°?±?10.7° and 14.0°?±?10.2°, respectively) were found with a standard passive complementary filter using a traditional static pose calibration that relies on magnetometer data. The proposed filter operated with low and consistent errors despite the presence of magnetic interferences, whereas traditional magnetometer-based approaches produced unacceptable results. This study contributes toward the ultimate goal of outdoor cycling analysis using inertial and magnetic measurement system technology by accomplishing magnetometer-free frame alignment and centripetal acceleration compensation when tracking crank angles.
机译:曲柄角是循环生物力学分析的重要结果。无线惯性和磁性测量系统不引人注目,并且具有比计化器,编码器或相机更有利地测量曲柄角度。然而,踩踏过程中磁场干扰和大的向量加速度引入跟踪误差。本研究的目的是使用无线惯性和磁测量系统验证用于跟踪自行车曲柄角的两个无磁力计传感器到体框架对准方法。提供了一种无源互补滤波器,用于使用安装在自行车框架上的惯性和磁性测量系统以及曲柄臂上的另一个磁性测量系统跟踪曲柄角。对使用不需要磁力计测量的功能校准技术进行惯性和磁性测量系统来执行传感器到体框对齐。过滤器还通过利用域约束和补偿向心加速度而无需磁力计数据来执行曲柄臂惯性和磁性测量系统的动态跟踪。使用立体光学缩略图,在慢速,中和快速踩踏节点处验证过滤器。滤波器在所有三个测试中产生了1.3°的绝对误差为1.3°±0.9°或更低。相比之下,大型和可变的绝对误差(11.6°?±7.6°,分别为14.2°?±10.7°和14.0°????????依靠磁力计数据。尽管存在磁干扰,所提出的滤波器以低且一致的误差操作,而传统的磁力计的方法产生了不可接受的结果。该研究通过在跟踪曲柄角度时,通过实现无磁速度框架对准和向中心加速补偿,有助于使用惯性和磁测量系统技术实现室外循环分析的最终目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号