首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >A forcing fictitious domain method to simulate fluid-particle interaction of particles with super-quadric shape
【24h】

A forcing fictitious domain method to simulate fluid-particle interaction of particles with super-quadric shape

机译:一种强制虚拟结构域方法,以模拟具有超微正形颗粒的流体粒子相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Particles of non-spherical shape are always encountered in many real applications. In this work, we develop a new framework to directly simulate super-quadric (SQ) particles in fluid flows based on a forcing fictitious domain method. Specifically, a SQ function is used to represent the particle shape of different types in a flexible manner. Meanwhile, the immersion of particles in the fluid is handled by imposing rigid solid body motion in the particle domain, as well as adding a local forcing term to the Navier-Stokes equations by calculating the integral of both the pressure and the viscous forces over the whole particle domain. Particle shapes are varied by changing the five controlling parameters of the SQ equation. Furthermore, we validate our approach by performing simulations of flow around a fixed particle in 2D and 3D with different Reynolds numbers, as well as settling one sphere in 3D channels. The validation results indicate that the current simulation results show a good agreement with experimental data. Moreover, our method has been used to study the flow passing fixed ellipsoidal particles, and by comparing the results to reference show that the proposal method is found to be of comparable accuracy in predicting flow patterns and drag force, while being directly applicable to non-ellipsoid particle with Reynolds numbers between 0.1 and 3000. Also, the proposal approach has been used to study the flow around other SQ particle shape. The SQ particles exemplarily considered in the current study are an ellipsoidal particle and two fibre-like particles. We present the results for drag and lift coefficients of different shapes with a wide range of Reynolds numbers, as well as different particle orientations. The obtained results lay the foundation to apply the framework to flown through multi-particle systems in the near future. (C) 2019 Elsevier B.V. All rights reserved.
机译:在许多真实应用中,总是遇到非球形形状的颗粒。在这项工作中,我们开发了一种新的框架,基于强制虚拟域方法直接模拟流体流动中的超微法(SQ)粒子。具体地,SQ函数以灵活的方式表示不同类型的粒子形状。同时,通过在粒子结构域中施加刚性的固体体运动,通过计算压力和粘性力的积分来将流体中的颗粒浸入流体中的颗粒浸入流体中的颗粒。整个粒子域。通过改变SQ方程的五个控制参数来改变粒子形状。此外,我们通过用不同的雷诺数在2D和3D中执行围绕固定粒子周围的流动的模拟来验证我们的方法,以及在3D通道中沉降一个球体。验证结果表明,目前的仿真结果与实验数据显示出良好的一致性。此外,我们的方法已被用于研究通过固定椭圆形颗粒的流动,并通过将结果与参考结果进行比较表明,该方法被发现在预测流动模式和拖曳力时具有可比精度,同时直接适用于非椭球颗粒与0.1和3000之间的雷诺数。此外,该提案方法已被用于研究其他Sq颗粒形状的流动。在当前研究中示例性地考虑的SQ颗粒是椭圆形颗粒和两种纤维状颗粒。我们介绍了不同形状的拖曳系数的结果,具有各种雷诺数,以及不同的颗粒取向。所获得的结果将框架奠定了应用框架,以在不久的将来通过多粒子系统飞行。 (c)2019年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号