...
首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Mechanical and wear performances of aluminum/sintered-carbon composites produced by pressure infiltration for pantograph sliders
【24h】

Mechanical and wear performances of aluminum/sintered-carbon composites produced by pressure infiltration for pantograph sliders

机译:铝/烧结碳复合材料的机械和磨损性能由Pantograin滑块压力渗透产生的

获取原文
获取原文并翻译 | 示例
           

摘要

Novel aluminum/sintered-carbon (Al/SC) composites for pantograph sliders were produced by means of pressure infiltration method, in which five porosity sintered carbon preforms were pressure infiltrated using 6201 aluminum alloy. Meanwhile, the effects of aluminum alloy on the properties and microstructures of Al/SC composites were investigated. The interface phase of Al4C3 between Al alloy and sintered carbon was identified. The resultant Al/SC composites exhibited an excellent mechanical strength, even with the highest compressive strength value of 304.28 MPa benefiting from the metal acting as a reinforcement phase. The tribological performance study shew that the friction coefficient of the Al/SC composite infiltrated by 7.17% volume fraction aluminum alloy reached a minimum in comparison to other volume fraction samples under 70 N, and the Al/SC composite containing 26.92% volume fraction aluminum alloy under the low applied load of 20 N presented a low friction coefficient. Although the wear behaviors of Al/SC composites containing various aluminum alloy volume were variant, the same wear mechanisms were involved, including adhesive, abrasive, fatigue and oxidative wear. (C) 2017 Elsevier B.V. All rights reserved.
机译:通过压力渗透方法制造用于诱导仪滑块的新型铝/烧结 - 碳(Al / SC)复合材料,其中五个孔隙率烧结碳预制件是使用6201铝合金的压力渗透。同时,研究了铝合金对Al / Sc复合材料的性能和微观结构的影响。鉴定了Al合金与烧结碳之间的Al4C3的界面相。所得到的Al / SC复合材料表现出优异的机械强度,即使具有从用作加强阶段的金属受益的304.28MPa的最高压缩强度值。摩擦学性能研究减少了7.17%体积馏分铝合金渗透的Al / Sc复合材料的摩擦系数与70 n下的其他体积分数样品相比达到最小值,以及含有26.92%体积级铝合金的Al / Sc复合材料在20n的低施加载荷下呈现低摩擦系数。尽管含有各种铝合金体积的Al / Sc复合材料的磨损行为是变体,但涉及相同的磨损机制,包括粘合剂,磨料,疲劳和氧化磨损。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号