首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Synthesis of silicon nanoparticles in a pilot-plant-scale microwave plasma reactor: Impact of flow rates and precursor concentration on the nanoparticle size and aggregation
【24h】

Synthesis of silicon nanoparticles in a pilot-plant-scale microwave plasma reactor: Impact of flow rates and precursor concentration on the nanoparticle size and aggregation

机译:在先导植物级微波等离子体反应器中合成硅纳米颗粒:流速的影响和前体浓度对纳米粒子尺寸和聚集的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This work is devoted to scale-up the microwave plasma synthesis of silicon nanoparticles from gaseous precursor monosilane (SiH4), previously investigated in lab-scale processes, to the pilot-plant-scale with production rates up to 200 g/h. The aim is to ensure reproducible, long-term operation of the reactor through gas-dynamic stabilization of the reacting flow and to control particle size and morphology via the gas flow velocity and the precursor concentration. Based on a newly designed nozzle, the lab-scale approach of stabilizing the plasma flow via a tangential sheath gas flow and an axial precursor gas flow was successfully transferred to the pilot-plant scale. At precursor concentrations up to 16 vol% of SiH4 diluted in argon and hydrogen, the as-synthesized particles have similar characteristics compared to those from lab-scale reactors. They are spherical, crystalline, mostly soft agglomerated, and show a log-normal size distribution with a geometric standard deviation around 1.45 as expected for self-preserving aerosol size-distributions. In contrast to lab-scale experiments, an increase in SiH4 concentration up to 48 vol% does not lead to further growth of isolated primary particles but promotes aggregate formation from smaller primary particles. This is attributed to massive initial nucleation of very small particles due to strong supersaturation and their subsequent strong aggregation while suppressing complete coalescence due to the limited residence time at high temperature. (C) 2018 Elsevier B.V. All rights reserved.
机译:该工作致力于扩大来自先前在实验室规模过程中研究的气态前体硅烷(SIH4)的微波血浆合成,以实验室规模的方法,以生产率高达200g / h的试验厂规模。目的是通过使反应流动的气体稳定和通过气体流速和前体浓度控制粒度和形态来确保反应器的可再现,长期操作。基于新设计的喷嘴,通过切向鞘气流和轴向前体气流稳定等离子体流动的实验室规模方法被成功转移到导频尺度。在前体浓度高达16Vol%的SiH4在氩气和氢气中稀释,与来自Lab级反应器的那些相比具有相似的特性。它们是球形,结晶,大多是柔软的凝聚,并且显示了自我保留气溶胶尺寸分布的预期大约1.45的几何标准偏差的对齐正常尺寸分布。与实验室规模实验相比,SIH4浓度高达48体积%的增加不会导致分离的初级颗粒的进一步生长,但从较小的初级颗粒中促进聚集体形成。这归因于由于强烈的过饱和度和其随后的强聚集,这归因于非常小的颗粒的初始成颗颗粒,同时抑制了由于在高温下的有限停留时间而抑制完整的聚结。 (c)2018 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号