>Mechanical behaviors of amorphous polymers have been investigated in all aspects from macroscopic thermodynamics to molecular dynamics in past five decad'/> A Mathematical Model for Amorphous Polymers Based on Concepts of Reptation Theory
首页> 外文期刊>Polymer engineering and science >A Mathematical Model for Amorphous Polymers Based on Concepts of Reptation Theory
【24h】

A Mathematical Model for Amorphous Polymers Based on Concepts of Reptation Theory

机译:基于重新论理论概念的非晶态聚合物的数学模型

获取原文
获取原文并翻译 | 示例
           

摘要

>Mechanical behaviors of amorphous polymers have been investigated in all aspects from macroscopic thermodynamics to molecular dynamics in past five decades. Most models either have too complex mathematics or can only explain mechanical behaviors of specific materials under certain defined conditions. In this article, a mathematical model is proposed to understand mechanical behaviors of amorphous polymers with aid of the concepts of reptation theory. This new model is capable to match most experimental results of different amorphous polymers for a wide range of time and temperature effect from rubber zone to glassy zone. Above glass transitional temperature, the model shows hyperelastic behavior. Below glass transitional temperature, elastic–viscoplastic properties can be obtained. In the proposed model, no yielding surface is assumed. Hyperelasticity and Mullin's effect are illustrated in a different way without assuming strain energy function in advance. Yielding stress is controlled by Young's moduli, defect density, and defect velocity of molecular chains. Anisotropic plasticity is simply controlled by anisotropic Young's moduli. Therefore, no additional anisotropic parameters are needed to define anisotropic yielding surface. Strain rate, temperature, and hydrostatic pressure effects on yielding stress are through their effect on Young's moduli. Linear elastic, hyperelastic, viscoelastic, and viscoplastic models are put into one single equation, which makes the mathematical structure very easy to understand and easy to use. This model is validated by comparing with five existed experimental data. Proposed model also shares some features similar to the old well‐known large deformation models for amorphous polymers. POLYM. ENG. SCI., 59:2335–2346, 2019. ? 2019 Society of Plastics Engineers
机译: 在过去五十年中,在宏观热力学对分子动力学的所有方面都研究了非晶聚合物的机械行为。大多数模型都具有太复杂的数学,或者只能在某些定义的条件下解释特定材料的机械行为。在本文中,提出了一种数学模型,以了解非晶态聚合物的机械行为,借助重新论理论的概念。该新模型能够匹配不同无定形聚合物的大多数实验结果,可用于橡胶区到玻璃区的各种时间和温度效应。在玻璃过渡温度以上,该模型显示高弹性行为。低于玻璃过渡温度,可以获得弹性粘性性能。在所提出的模型中,假设没有屈服表面。超弹性和Mullin的效果以不同的方式示出而不引发应变能功能。屈服应力由杨氏模,缺陷密度和分子链的缺陷速度控制。各向异性可塑性仅通过各向异性杨氏调节来控制。因此,不需要额外的各向异性参数来限定各向异性屈服表面。应变速率,温度和静液压压力对屈服应力的影响是通过它们对杨氏调制的影响。线性弹性,超弹性,粘弹性和粘胶型号放入一个单一方程中,这使得数学结构很容易理解和易于使用。通过与五个存在的实验数据进行比较验证该模型。提出的模型还与非晶态聚合物的旧众所周知的大变形模型相似。聚合物。 eng。 SCI。,59:2335-2346,2019 2019年塑料工程师协会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号