...
首页> 外文期刊>Plasmonics >A Study of Metal@Graphene Core-Shell Spherical Nano-Geometry to Enhance the SPR Tunability: Influence of Graphene Monolayer Shell Thickness
【24h】

A Study of Metal@Graphene Core-Shell Spherical Nano-Geometry to Enhance the SPR Tunability: Influence of Graphene Monolayer Shell Thickness

机译:金属@石墨烯芯壳球形纳米几何研究提高SCL可调性:石墨烯单层壳体厚度的影响

获取原文
获取原文并翻译 | 示例

摘要

Graphene, new generation advance material of two dimensional hexagonal lattice having extraordinary optical signatures, is used as coating material to enhance the surface plasmon resonance (SPR) effect of core@shell metal nanospheres. In a core@shell nanosphere, we have chosen metal as a core and graphene monolayer (GML) as a shell. We have analysed optical signature of coated and non-coated nanospheres in terms of extinction efficiency (Q (ext)) and tunabilty of surface plasmon resonances using electrostatic model, where particle size is much smaller than the wavelength of incident light. We analysed this model over different metals (silver, gold and aluminium) core, coated with different thickness of GML (d = 0.1 to 0.5 nm). These core@shell nanospheres are embedded in refractive index media of air (n (em) = 1), SiO2 (n (em) = 1.47) and TiO2 (n (em) = 2.79). The Q (ext) has been calculated by varying both the core radii as well as the GML shell thickness. Graphene-coated metal nanosphere exhibits SPRs that have wide range tunability from 300 to 1500 nm. In the presenting work, we also analysed that extinction efficiency for metal@GML is higher in TiO2 than others. The optimum value of GML shell thickness is 0.4 nm for TiO2, the magnitude of extinction efficiency is maximum for the optimum thickness. The tunability of these plasmonic resonances is highly dependent on the core@shell material, thickness of Graphene shell and surrounding environment while non-coated metal nano-spheres do not show appropriate SPR tunability.
机译:石墨烯,具有非凡光学签名的二维六边形晶格的新一代先进材料,用作涂层材料,以增强核心壳金属纳米球的表面等离子体共振(SPR)效应。在核心@ Shell纳米底座中,我们选择了金属作为核心和石墨烯单层(GML)作为壳。我们在使用静电模型的消光效率(Q(ext))和表面等离子体共振的曲目中分析了涂覆和非涂覆纳米球的光学特征,其中粒度远小于入射光的波长。我们在不同的金属(银,金和铝)芯上分析了该模型,涂有不同厚度的GML(D = 0.1至0.5nm)。这些核心壳纳米球嵌入空气的折射率介质(N(EM)= 1),SiO2(N(EM)= 1.47)和TiO 2(N(EM)= 2.79)中。通过改变核心半径以及GML壳厚度来计算Q(ext)。石墨烯涂层金​​属纳米纳瓦展览展示SPRS,可调幅度范围为300至1500纳米。在本作工作中,我们还分析了金属@ GML的灭绝效率比其他金属的效率更高。对于TiO 2,GML壳厚度的最佳值为0.4nm,消光效率的大小最大为最佳厚度。这些等离子体共振的可调性高度依赖于核心壳材料,石墨烯壳和周围环境的厚度,而非涂层金属纳米球不显示适当的弹簧可调性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号