...
首页> 外文期刊>Plasmonics >Realizing Prominent Fano Resonances in Metal-Insulator-Metal Plasmonic Bragg Gratings Side-Coupled with Plasmonic Nanocavities
【24h】

Realizing Prominent Fano Resonances in Metal-Insulator-Metal Plasmonic Bragg Gratings Side-Coupled with Plasmonic Nanocavities

机译:实现金属绝缘体 - 金属等质子布拉格光栅中突出的Fano共振与等离子体纳米覆盖相结合

获取原文
获取原文并翻译 | 示例

摘要

The generation of Fano resonances usually stems from the interference between a continuum and a discrete state. In this paper, we show that prominent Fano resonances can be realized in plasmonic metal-insulator-metal (MIM) Bragg gratings side-coupled with plasmonic nanocavities, where the Bragg grating provides the continuum state and the nanocavity supports the discrete state. Through tuning the position of the bandgap of surface plasmon polariton (SPP) in the Bragg gratings, the transmission Fano profiles can be modified dramatically. We find that strong coupling between the band edge mode of SPP bandgap and the resonant mode of nanocavity can lead to prominent Fano resonances with obvious transmission peak and valley. When the coupling strength between band edge mode and resonant mode becomes weak, the asymmetric Fano transmission profile vanishes. Additionally, by increasing the refractive index of the insulator, extracted sensitivity of our structures can reach 1425 nm/RIU (refractive index unit, RIU) and the maximal figure-of-merit (FOM) can be as large as 1170. Our proposed structures provide a new feasible solution in realizing Fano resonances and can become one of promising candidates for the Fano resonance-based integrated nanoscale refractive index sensors.
机译:FANO共振的产生通常源于连续统一和离散状态之间的干扰。在本文中,我们表明,突出的扇形谐振可以在等离子体金属 - 绝缘体 - 金属(MIM)布拉格光栅中与等离子体纳米盖侧侧耦合的,其中布拉格光栅提供连续状态,纳米厚度支持离散状态。通过在布拉格光栅中调节表面等离子体极谱(SPP)的带隙的位置,可以显着修改变速器扇形轮廓。我们发现SPP带隙的频带边缘模式与纳米恒温的谐振模式之间的强耦合可以导致具有明显传输峰和谷的突出的Fano共振。当带边缘模式和谐振模式之间的耦合强度变弱时,非对称Fano传输配置文件消失。另外,通过增加绝缘体的折射率,所提取的我们结构的灵敏度可以达到1425nm / Riu(折射率单元,RiU),最大值(FOM)可以大至1170.我们所提出的结构在实现FANO共振方面提供一种新的可行解决方案,并且可以成为FANO共振的集成纳米级折射率传感器的承诺候选人之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号