首页> 外文期刊>Plasma Sources Science & Technology >Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface
【24h】

Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface

机译:纳秒脉冲放电的电子密度和电子温度测量在液态水表面上排出

获取原文
获取原文并翻译 | 示例
           

摘要

Time-resolved electron density, electron temperature, and gas temperature in nanosecond pulse discharges in helium and O-2-He mixtures near liquid water surface are measured using Thomson/pure rotational Raman scattering, in two different geometries, (a) 'diffuse filament' discharge between a spherical high-voltage electrode and a grounded pin electrode placed in a reservoir filled with distilled water, with the tip exposed, and (b) dielectric barrier discharge between the high-voltage electrode and the liquid water surface. A diffuse plasma filament generated between the electrodes in helium during the primary discharge pulse exhibits noticeable constriction during the secondary discharge pulse several hundred ns later. Adding oxygen to the mixture reduces the plasma filament diameter and enhances constriction during the secondary pulse. In the dielectric barrier discharge, diffuse volumetric plasma occupies nearly the entire space between the high voltage electrode and the liquid surface, and extends radially along the surface. In the filament discharge in helium, adding water to the container results in considerable reduction of plasma lifetime compared to the discharge in dry helium, by about an order of magnitude, indicating rapid electron recombination with water cluster ions. Peak electron density during the pulse is also reduced, by about a factor of two, likely due to dissociative attachment to water vapor during the discharge pulse. These trends become more pronounced as oxygen is added to the mixture, which increases net rate of dissociative attachment. Gas temperature during the primary discharge pulse remains near room temperature, after which it increases up to T similar to 500 K over 5 mu s and decays back to near room temperature before the next discharge pulse several tens of ms later. As expected, electron density and electron temperature in diffuse DBD plasmas are considerably lower compared to peak values in the filament discharge. Use of Thomson
机译:使用汤姆森/纯旋转拉曼散射,在两个不同的几何形状,(a)'漫射丝'球形高压电极和置于填充有蒸馏水的储存器中的接地销电极之间的放电,具有尖端暴露,(B)在高压电极和液体水表面之间的介电阻挡放电。在初级放电脉冲期间在氦气期间在氦气期间的电极之间产生的漫反射等离子体灯丝在次级放电脉冲期间在次级放电脉冲期间显示出明显的收缩。向混合物中加入氧气降低了等离子体丝直径并在二次脉冲期间增强收缩。在介质阻挡放电中,漫反射等离子体几乎占据高电压电极和液体表面之间的整个空间,并且沿着表面径向延伸。在氦气中的灯丝排出中,与干燥氦的放电相比,将水加入容器中导致血浆寿命相当大降低,达到大量级,表明用水簇离子快速电子重组。在脉冲期间的峰值电子密度也减小了大约两倍,可能由于在放电脉冲期间对水蒸气分离而产生的可能性。这些趋势变得更加明显,因为氧气加入到混合物中,这增加了分离附件的净率。初级放电脉冲期间的气体温度保持在室温附近,之后它增加到50℃超过5μs,并且在下一个放电脉冲之前衰减在下一个张放电脉冲之前几十ms。与灯丝放电中的峰值相比,随着预期的,漫射DBD等离子体中的电子密度和电子温度相比显着降低。使用汤姆森

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号