首页> 外文期刊>Plasma Sources Science & Technology >Analytical investigation of microwave resonances of a curling probe for low and high-pressure plasma diagnostics
【24h】

Analytical investigation of microwave resonances of a curling probe for low and high-pressure plasma diagnostics

机译:低压等离子体诊断卷曲探针微波共振的分析研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The concept of ‘active plasma resonance spectroscopy' (APRS) has attracted greater interest in recent years as an established plasma diagnostic technique. The APRS describes a class of related methods utilizing the intrinsic ability of plasma to resonate at or near the electron plasma frequency ω_(pe). The Curling probe (CP) as a novel realization of the APRS idea, is a miniaturized spiral slot embedded flatly in the chamber wall. Consequently, a plasma diagnostic technique with minimum disturbance and without metal contamination can be developed. To measure the plasma parameters the CP is fed with a weak frequency-swept signal from the exterior of the plasma chamber by a network analyzer which also records the response of the plasma versus the frequency. The resonance behavior is strongly dependent on the electron density and the gas pressure. The CP has also the advantage of resonating at a frequency greater than ω_(pe) which is dependent on the spiral's length. The double resonance characteristic gives the CP the ability to be applied in varying plasma regimes. Assuming that the spiralization does not have a considerable effect on the resonances, a ‘straightened' infinite length CP has recently been investigated (Arshadi and Brinkmann 2016 Plasma Sources Sci. Technol. 25 045014) to obtain the surface wave resonances. This work generalizes the approach and models the CP by a rectangular slot-type resonator located between plasma and quartz. Cold plasma theory and Maxwell's equations are utilized to compute the electromagnetic fields propagating into the plasma by the diffraction of an incident plane wave at the slot. A mathematical model is employed and both kinds of resonances are derived. The analytical study of this paper shows good agreement with the numerical results of the probe inventors.
机译:“活跃等离子体共振光谱”(APRS)的概念在近年来作为建立的血浆诊断技术引起了更大的兴趣。 APRS描述了一种利用等离子体的固有能力在电子等离子体频率ω_(PE)处谐振的内在能力的相关方法。卷曲探针(CP)作为APRS思想的新颖实现,是嵌入室壁中的小型化螺旋槽。因此,可以开发具有最小扰动和没有金属污染的等离子体诊断技术。为了测量等离子体参数,通过网络分析仪从等离子体室的外部馈送CP的弱频率扫描信号,该网络分析器还记录等离子体与频率的响应。共振行为强烈依赖于电子密度和气体压力。 CP还具有以大于ω_(PE)的频率谐振的优点,这取决于螺旋的长度。双共振特性使CP能够以不同的等离子体制度应用。假设螺旋化对共振没有相当大的影响,最近已经研究了“拉直”无限长度CP(Arshadi和Brinkmann 2016等离子体源SCI。Technol.25 045014)以获得表面波共振。这项工作通过了位于等离子体和石英之间的矩形槽型谐振器来推广方法并模拟CP。冷等离子体理论和麦克斯韦方程式用于将传播到等离子体传播到等离子体中的电磁场通过槽处的入射平面波的衍射来计算传播到等离子体中的电磁场。采用数学模型,衍生出两种共振。本文的分析研究表明,与探针发明人的数值结果表明了良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号