首页> 外文期刊>Plasma physics and controlled fusion >Path-oriented early reaction to approaching disruptions in ASDEX Upgrade and TCV in view of the future needs for ITER and DEMO
【24h】

Path-oriented early reaction to approaching disruptions in ASDEX Upgrade and TCV in view of the future needs for ITER and DEMO

机译:鉴于ITER和演示的未来需求,对Asdex升级和TCV中断的途径导向的早期反应。

获取原文
获取原文并翻译 | 示例
       

摘要

Routine reaction to approaching disruptions in tokamaks is currently largely limited to machine protection by mitigating an ongoing disruption, which remains a basic requirement for ITER and DEMO [1]. Nevertheless, a mitigated disruption still generates stress to the device. Additionally, in future fusion devices, high-performance discharge time itself will be very valuable. Instead of reacting only on generic features, occurring shortly before the disruption, the ultimate goal is to actively avoid approaching disruptions at an early stage, sustain the discharges whenever possible and restrict mitigated disruptions to major failures. Knowledge of the most relevant root causes and the corresponding chain of events leading to disruption, the disruption path, is a prerequisite. For each disruption path, physics-based sensors and adequate actuators must be defined and their limitations considered. Early reaction facilitates the efficiency of the actuators and enhances the probability of a full recovery. Thus, sensors that detect potential disruptions in time are to be identified. Once the entrance into a disruption path is detected, we propose a hierarchy of actions consisting of (I) recovery of the discharge to full performance or at least continuation with a less disruption-prone backup scenario, (II) complete avoidance of disruption to sustain the discharge or at least delay it for a controlled termination and, (III), only as last resort, a disruption mitigation. Based on the understanding of disruption paths, a hierarchical and path-specific handling strategy must be developed. Such schemes, testable in present devices, could serve as guidelines for ITER and DEMO operation. For some disruption paths, experiments have been performed at ASDEX Upgrade and TCV. Disruptions were provoked in TCV by impurity injection into ELMy H-mode discharges and in ASDEX Upgrade by forcing a density limit in H-mode discharges. The new approach proposed in this paper is discussed for th
机译:常规反应接近Tokamaks的中断目前主要限于机器保护,通过减轻持续的破坏,这仍然是迭代和演示的基本要求[1]。然而,缓解破坏仍然为装置产生压力。另外,在未来的融合设备中,高性能放电时间本身将是非常有价值的。在中断之前不久发生,而不是仅对通用特征进行反应,最终目标是积极避免在早期阶段接近中断,尽可能在可能的情况下维持放电并限制对主要失败的缓解中断。了解最相关的根本原因和相应的事件链条导致中断路径的中断,是一个先决条件。对于每个中断路径,必须定义基于物理的传感器和足够的执行器,并且考虑了它们的限制。早期反应促进了致动器的效率并增强了完全恢复的可能性。因此,要识别检测潜在中断的传感器。一旦检测到中断路径的入口,我们就会提出由(i)恢复放电的行动等级,或者至少继续持续易受中断的备份方案,(ii)完全避免避免维持中断放电或至少延迟它用于受控终止,(iii),仅作为最后的手段,一个中断缓解。基于对中断路径的理解,必须开发分层和特定的特定处理策略。在现有设备中可测试的这些方案可以作为迭代和演示操作的指导。对于一些中断路径,在ASDEX升级和TCV下进行了实验。通过杂质注入在紫外线H模式排放中,通过迫使H模式放电中的密度限制来激发杂质H-MODE放电中的破坏。本文提出的新方法是讨论的

著录项

  • 来源
  • 作者单位

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    CNR IFP Via R Cozzi 53 I-20125 Milan Italy;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    ENEA Fus &

    Nucl Safety Dept CR Frascati I-00044 Frascati Rome Italy;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    ENEA Fus &

    Nucl Safety Dept CR Frascati I-00044 Frascati Rome Italy;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    CNR IFP Via R Cozzi 53 I-20125 Milan Italy;

    Consorzio RFX Corso Stati Uniti 4 I-35127 Padua Italy;

    CNR IFP Via R Cozzi 53 I-20125 Milan Italy;

    Consorzio RFX Corso Stati Uniti 4 I-35127 Padua Italy;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Consorzio RFX Corso Stati Uniti 4 I-35127 Padua Italy;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne SPC CH-1015 Lausanne Switzerland;

    CNR IFP Via R Cozzi 53 I-20125 Milan Italy;

    Consorzio RFX Corso Stati Uniti 4 I-35127 Padua Italy;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Max Planck Inst Plasma Phys D-85748 Garching Germany;

    Consorzio RFX Corso Stati Uniti 4 I-35127 Padua Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

    tokamak; disruption avoidance; ECCD; plasma-state; density limit; control;

    机译:Tokamak;破坏避免;ECCD;等离子体状态;密度限制;控制;
  • 入库时间 2022-08-20 06:25:49

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号