Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs
首页> 外文期刊>Plant Physiology and Biochemistry >Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs
【24h】

Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs

机译:从根切割传播的微鼠植物和植物中杂交杨树特征的生理学,血管和纳米力学评估:对育种计划的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in?vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula?×?(Populus?×?canescens)] plants propagated from in?vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to
机译:<![CDATA [ 抽象 微鼠植物在将它们转移到温室或者中的培养物中的快速水分损失中经历重大压力现场条件。这是通过低效的蒸腾气孔控制和更高的光强度和较低湿度的变化引起的。了解允许微鼠植物以响应环境条件修饰它们的表型的生理学,血管和生物力学过程可以有助于改善场地性能和植物存活。要识别混合杨树之间的更改[ populus mrelula ?×?( opulus ?x? canescens )]从体外组织培养和从根切屑中传播的植物,我们评估了叶片生长,光合作用和血管性状的任何差异的叶子性能,以及气囊元素细胞壁的纳米机械性能。微鼠植物显示出叶面积,叶长,叶宽和叶片干块的显着较高的值。较大的叶面积和叶片尺寸尺寸由该股票类型记录的较高的蒸腾速率产生。此外,微催化植物达到叶绿素 a 荧光参数的值较高,以及气管元素细胞壁的纳米机械耗散能量,其可以在非生物应激下指示初级木质组织内的更高阻尼能力状况。从根切屑传播的植物的性能优于瞬时水使用效率,这表示较高的适应能力

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号