...
【24h】

A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics

机译:一种不连续的Galerkin方法,具有束缚保存限制器,用于平流固体地球力学中的非漫射场

获取原文
获取原文并翻译 | 示例

摘要

Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG-BP method can provide improved tracking of sharp compositional boundaries. For applications in which strict bound-preserving behavior is desired, use of an element that provides a divergence-free condition on the weak formulation (e.g., Raviart-Thomas) and an improved mesh coarsening scheme for the AMR are required. (c) 2017 Elsevier B.V. All rights reserved.
机译:矿物组合物对岩石的性质产生了强烈的影响,并且在大规模的地幔对流的背景下是基本上不扩散的财产。由于地球之间的非扩散性质和构成不同区域的起源,不同地区之间的边界几乎不连续。虽然在Mantle对流的数值模拟中跟踪岩石组成有不同的方法,但必须在选择适当的方法时考虑计算成本,准确性或易于实现之间的权衡。现有方法可以计算地昂贵,导致过冲,涂抹尖锐的边界,或者不容易适应跟踪多个组成字段。在这里,我们介绍了一种不连续的Galerkin方法,使用二阶跑步 - Kutta,强大的稳定性保存时间离散化方法,用于平流非漫射领域的强稳定性保存时间离散方法。首先,我们表明该方法是针对点偏见的自由流动(例如,在盒子中的规定圆形流动的束缚。但是,使用标准自适应网格细化(AMR)存在过拍误差(2%),因为在网格粗化期间不保留电池平均值。使用下降框问题对对流主导流动算法的效力进行了演示。我们发现,与人工熵粘度法(6-15元素)相比,DG-BP方法维持更尖锐的成分边界(3-5个元素),尽管过度/下冲误差是相似的。当与AMR一起使用时,DG-BP方法导致由于不连续附近的距离细化的较小区域而导致的自由度较少。然而,使用泰勒 - 罩元件和均匀的网格,大约有0.0001%的过早误差,但使用AMR时,该误差增加到0.01-0.10%。因此,对于所需连续现场方法的研究问题,DG-BP方法可以提供改进的尖锐组成边界的跟踪。对于需要严格的限制保留行为的应用,需要使用在弱配方(例如,raviart-Thomas)上提供无分散条件的元素和AMR的改进的网格粗化方案。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号