...
首页> 外文期刊>Physical review, E >Coalescence of sessile microdroplets subject to a wettability gradient on a solid surface
【24h】

Coalescence of sessile microdroplets subject to a wettability gradient on a solid surface

机译:在固体表面上受润湿性梯度的术后术梯度的聚结

获取原文
获取原文并翻译 | 示例
           

摘要

While there are intensive studies on the coalescence of sessile macroscale droplets, there is little study on the coalescence of sessile microdroplets. In this paper, the coalescence process of two sessile microdroplets is studied by using a many-body dissipative particle dynamics numerical method. A comprehensive parametric study is conducted to investigate the effects on the coalescence process from the wettability gradient, hydrophilicity of the solid surface, and symmetric or asymmetric configurations. A water bridge is formed after two microdroplets contact. The temporal evolution of the coalescence process is characterized by the water bridge’s radii parallel to the solid surface (W_m) and perpendicular to the solid surface (H_m). It is found that the changes of both Hm and Wm with time follow a power law; i.e., Hm = β1τ β and W_m = α1τ α. The growth of Hm and Wm depends on the hydrophilicity of the substrate. Wm grows faster than Hm on a hydrophilic surface, and Hm grows faster than Wm on a hydrophobic surface. This is due to the strong competition between capillary forces induced by the water-bridge curvature and the solid substrate hydrophobicity. Also, flow structure analysis shows that regardless of the coalescence type once the liquid bridge is formed the liquid flow direction inside the capillary bridge is to expand the bridge radius. Finally, we do not observe oscillation of the merged droplet during the coalescence process, possibly due to the significant effects of the viscous forces.
机译:虽然有关于无术Macroscale液滴的聚结的密集研究,但几乎没有关于无梗塞微滴的聚结的研究。在本文中,通过使用许多体耗散粒子动力学数值方法研究了两个畸形微滴的聚结过程。进行综合参数研究以研究来自固体表面的润湿性梯度,亲水性的聚结过程的影响,以及对称或不对称配置。在两个微型电池接触后形成水桥。聚结过程的时间演变的特征在于水桥的半径平行于固体表面(W_M)并垂直于固体表面(H_M)。结果发现,HM和WM的变化随时间遵循权力法;即,HM =β1τβ和W_M =α1τα。 HM和WM的生长取决于基材的亲水性。 WM在亲水表面上的速度比HM快,HM在疏水表面上的速度比WM更快。这是由于水桥曲率和固体基质疏水性诱导的毛细管力之间的强烈竞争。而且,流动结构分析表明,无论在液体桥都形成液体桥内,毛细管桥内的液体流动方向是为了膨胀桥梁半径。最后,我们在聚结过程中没有观察合并液滴的振荡,可能是由于粘性力的显着影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号