【24h】

Magma chambers: what we can, and cannot, learn from volcano geodesy

机译:岩浆室:我们可以,不能,从火山的大地测量中学习

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Geodetic observations on volcanoes can reveal important aspects of crustal magma chambers. The rate of decay of deformation with distance reflects the centroid depth of the chamber. The amplitude of the deformation is proportional to the product of the pressure change and volume of the reservoir. The ratio of horizontal to vertical displacement is sensitive to chamber shape: sills are efficient at generating vertical displacement, while stocks produce more horizontal deformation. Geodesy alone cannot constrain important parameters such as chamber volume or pressure; furthermore, kinematic models have no predictive power. Elastic response combined with influx proportional to pressure gradient predicts an exponentially decaying flux, leading to saw-tooth inflation cycles observed at some volcanoes. Yet many magmatic systems exhibit more complex temporal behaviour. Wall rock adjacent to magma reservoirs cannot behave fully elastically. Modern conceptual models of magma chambers also include cumulate and/or mush zones, with potentially multi-level melt lenses. A viscoelastic shell surrounding a spherical magma chamber significantly modifies the predicted time-dependent response; post-eruptive inflation can occur without recharge if the magma is sufficiently incompressible relative to the surrounding crust (Segall P. 2016 J. Geophys. Res. Solid Earth, 121, 8501-8522). Numerical calculations confirm this behaviour for both oblate and prolate ellipsoidal chambers surrounded by viscoelastic aureoles. Interestingly, the response to a nearly instantaneous pressure drop during an explosive eruption can be non-monotonic as the rock around the chamber relaxes at different rates. Pressure-dependent recharge of a non-Newtonian magma in an elastic crust leads to an initially high rate of inflation which slows over time; behaviour that has been observed in some magmatic systems. I close by discussing future challenges in volcano geodesy.
机译:火山的大地测量观测可以揭示地壳岩浆室的重要方面。距离变形的衰变速率反映了腔室的质心深度。变形的幅度与储存器的压力变化和体积的乘积成比例。水平与垂直位移的比率对腔室形状敏感:窗台在产生垂直位移时是有效的,而股票可以产生更多水平变形。单独的Geodesy不能限制腔体积或压力等重要参数;此外,运动模型没有预测力。弹性响应与流入与压力梯度成比例预测指数腐烂的通量,导致在一些火山上观察到的锯齿膨胀循环。然而,许多岩浆系统表现出更复杂的时间行为。靠近岩浆水库附近的壁岩不能完全弹性地表现。岩浆室的现代概念模型还包括累积和/或糊状区域,具有潜在的多级熔体镜头。围绕球形岩浆室的粘弹性壳显着改变预测的时间依赖性反应;如果岩浆相对于周围地壳(SEGALL第2016 J. Geophys,则可以在没有充电的情况下发生喷发后的通胀。RES。固体地球,121,8501-8522)。数值计算证实了由粘弹性葡萄果包围的扁平和椭圆形椭圆形腔室的这种行为。有趣的是,在爆炸性喷发过程中对几乎瞬时压降的反应可以是非单调的,因为室周围的岩石以不同的速率放松。在弹性地壳中的非牛顿岩浆的压力依赖性充电导致最初高速的通胀率随着时间的推移而放缓;在一些岩浆系统中观察到的行为。我通过讨论Volcano Geodesy的未来挑战关闭。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号