首页> 外文学位 >Magma chamber processes at Mutnovsky Volcano, Russia.
【24h】

Magma chamber processes at Mutnovsky Volcano, Russia.

机译:俄罗斯Mutnovsky火山的岩浆室处理。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is composed of two manuscripts about the evolution of Mutnovsky Volcano in Kamchatka, Russia. Mutnovsky has been active for the past approximately 80,000 years, during which there was the formation and subsequent eruption of four major stratocones. These four eruptive centers, named Mutnovsky I, II, III, and IV from oldest to youngest, have a range of erupted product compositions from basalt to dacite. The first major goal of this project was to investigate the melt source for Mutnovsky. Whole rock trace element and Nd, Sr, and Pb isotopic data were used to determine that the melt source was fluid flux melting of the mantle wedge with very little crustal or slab surface sediment-melt input. The second major goal of this project was to determine the cause of the compositional heterogeneity of erupted products at Mutnovsky. Whole rock geochemical modeling demonstrated that melts were generated both above and below the garnet/spinel transition at approximately 67 km depth in the mantle wedge. Different degrees of partial melting of these two mantle compositions, followed by fractional crystallization, was initially determined to be the cause of the range of compositions found at Mutnovsky. However, melt inclusion data collected later provided new insight into magmatic differentiation processes. Melt inclusion data have a much wider range of values for the major and trace elements than the whole rock data; whole rock compositions fall along mixing lines between the most and least evolved melt inclusion compositions. This observation, combined with mafic enclaves found in more felsic hosts in whole rock samples and a variety of types of zoning found in plagioclase, indicate that magma mixing is the major cause of the compositional heterogeneity at Mutnovsky. The third major goal of this study was to determine the structure of the preeruptive magma storage system for Mutnovsky. Two thermobarometers, orthopyroxene-liquid (Putirka, 2008) and clinopyroxene-liquid (Putirka et al., 2003), were used to determine the depths of pyroxene-melt equilibrium and thus the depths of magma stagnation. Both thermobarometers indicated that the depth of magma storage chambers was increasing with time, from Mutnovsky I to IV.
机译:本文由两篇有关俄罗斯堪察加半岛穆特诺夫斯基火山演化的手稿组成。 Mutnovsky在过去大约80,000年中一直活跃,在此期间,形成了四个主要平流层并随后喷发。这四个喷发中心,从最老到最年轻的分别命名为Mutnovsky I,II,III和IV,其喷发产物组成范围从玄武岩到达克特。该项目的第一个主要目标是研究Mutnovsky的熔体来源。整个岩石中的痕量元素和Nd,Sr和Pb同位素数据用于确定熔体来源是地幔楔的流体通量熔融,几乎没有地壳或平板表面沉积物-熔体输入。该项目的第二个主要目标是确定Mutnovsky爆发产品成分异质性的原因。整个岩石地球化学模型表明,在地幔楔中约67 km的深度处,石榴石/尖晶石过渡带的上方和下方均产生了熔体。最初确定这两种地幔组合物的不同程度的部分熔融,然后进行分步结晶,这是在Mutnovsky发现组合物范围的原因。然而,后来收集的熔体包裹体数据为岩浆分化过程提供了新的见识。熔体夹杂物数据的主要和痕量元素的值范围比整个岩石数据的范围大得多。整个岩石成分沿着混合演化线出现在最多和最少的熔体夹杂物成分之间。这项观察结果与在整个岩石样品中更多的长英质宿主中发现的镁铁质飞地以及斜长石中发现的多种类型的地带相结合,表明岩浆混合是Mutnovsky成分异质性的主要原因。这项研究的第三个主要目标是确定Mutnovsky火山爆发前的岩浆储存系统的结构。两种热压计分别是邻苯二酚-液体(Putirka,2008年)和斜柏木-液体(Putirka等人,2003年)来确定辉石-熔体平衡深度,从而确定岩浆停滞深度。两种温度晴雨表均表明,从Mutnovsky I到IV,岩浆储藏室的深度随着时间而增加。

著录项

  • 作者

    Robertson, Kelly Lynn.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Geology.;Geochemistry.;Petrology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 336 p.
  • 总页数 336
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号