...
首页> 外文期刊>Philosophical Transactions of the Royal Society of London, Series B. Biological Sciences >Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism
【24h】

Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism

机译:海洋硅藻中二氧化碳采集和二氧化碳感应的机制:碳代谢的网关

获取原文
获取原文并翻译 | 示例

摘要

Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO2 fixation. The evolution of a CO2-concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO2] aq in seawater relative to concentrations required by the CO2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO2 in water and a limited CO2 formation rate from HCO3- in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of HCO3- through plasma-membrane type solute carrier (SLC)4 family HCO3- transporters and the other is more reliant on passive diffusion of CO2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO2 only in close proximity to RubisCO preventing unnecessary CO2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal u-CA indicates that the strategy to supply CO2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are discussed.
机译:硅藻是最成功的海洋真核藻类团体之一,负责年度全球二氧化碳固定的20%。 CO2浓缩机制(CCM)的演变允许硅藻克服海洋环境中的光合作用的许多严重限制,特别是海水中的浓度相对于CO 2固定酶,丝纤维 - 1,5所需的浓度 - - 磷酸氨基羧酶/氧酶(Rubisco),其部分是由于水中CO 2的缓慢扩散速率和来自HCO3-在海水中的有限CO 2形成速率。硅藻利用两种替代策略来占据环境中的溶解无机碳(DIC):一个主要依赖于HCO3-通过血浆膜型溶质载体(SLC)4家族HCO3-运输器的直接吸收,另一个更依赖于此由外部碳酸酐酶(CA)形成的CO2的被动扩散。在叶绿体膜体系上,最有可能通过SLC4型转运蛋​​白激活进入细胞质中的碳酸氢盐。基质中的碳酸氢盐仅在靠近Rubisco靠近靠近rubisco而转化为CO 2,防止了不必要的CO 2泄漏。 CAS在动员DIC时发挥重要作用,因为它逐渐迁移到固定部位。然而,CA的进化类型和亚细胞位置在不同的硅藻之间不保守,强烈建议该DIC动员策略可能在不同的起源中发出多次。相比之下,最近发现的囊网腔U-CA表示,将CO 2的策略提供给芘中的Rubisco的策略可能与绿藻的策略非常相似,并且强烈地表明CCM功能的收敛参数不仅在硅藻,但在真核藻类中一般。在本次综述中,讨论了硅藻的实验和相应的理论模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号