【24h】

Caenorhabditis elegans and the network control framework-FAQs

机译:Caenorhabditisevis和网络控制框架 - 常见问题解答

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Control is essential to the functioning of any neural system. Indeed, under healthy conditions the brain must be able to continuously maintain a tight functional control between the system's inputs and outputs. One may therefore hypothesize that the brain's wiring is predetermined by the need to maintain control across multiple scales, maintaining the stability of key internal variables, and producing behaviour in response to environmental cues. Recent advances in network control have offered a powerful mathematical framework to explore the structure-function relationship in complex biological, social and technological networks, and are beginning to yield important and precise insights on neuronal systems. The network control paradigm promises a predictive, quantitative framework to unite the distinct datasets necessary to fully describe a nervous system, and provide mechanistic explanations for the observed structure and function relationships. Here, we provide a thorough review of the network control framework as applied to Caenorhabditis elegans (Yan et al. 2017 Nature 550, 519-523. (doi:10.1038/nature24056)), in the style of Frequently Asked Questions. We present the theoretical, computational and experimental aspects of network control, and discuss its current capabilities and limitations, together with the next likely advances and improvements. We further present the Python code to enable exploration of control principles in a manner specific to this prototypical organism.
机译:控制对于任何神经系统的运作至关重要。实际上,在健康条件下,大脑必须能够在系统的输入和输出之间连续维持紧密的功能控制。因此,可以假设大脑的布线是通过维持跨多个尺度的控制,维持关键内部变量的稳定性以及响应环境线索的行为的需要预先确定大脑的布线。网络控制的最新进展提供了强大的数学框架,以探讨复杂的生物,社会和技术网络中的结构功能关系,并开始对神经元系统产生重要和精确的见解。网络控制范例承诺预测,定量框架,以团结完全描述神经系统所需的不同数据集,并为观察到的结构和功能关系提供机械解释。在这里,我们对应用于Caenorhabditis elegans的网络控制框架进行了彻底的审查(Yan等人。2017年自然550,519-523。(DOI:10.1038 / Nature24056),在常见问题的问题中。我们介绍了网络控制的理论,计算和实验方面,并讨论了其当前能力和限制,以及下一个可能的进步和改进。我们进一步提出了Python代码,以便以特定于此原型有机体的方式探索控制原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号