...
首页> 外文期刊>Parasitology Research >Nanosecond pulsed electric field (nsPEF) disrupts the structure and metabolism of human Echinococcus granulosus protoscolex in vitro with a dose effect
【24h】

Nanosecond pulsed electric field (nsPEF) disrupts the structure and metabolism of human Echinococcus granulosus protoscolex in vitro with a dose effect

机译:纳秒脉冲电场(NSPEF)扰乱了人类呼吸刺激粒细胞颗粒质颗粒的结构和代谢的剂量效应

获取原文
获取原文并翻译 | 示例

摘要

The number of interventional treatments for hepatic cystic echinococcosis is increasing, but the chemicals or high temperatures used in these methodologies cause biliary complications, thus limiting their clinical applications. This experimental study aimed to apply a novel, non-thermal, non-chemical ablation method termed nanosecond pulsed electric field (nsPEF) for the treatment of human hepatic cystic echinococcosis. The nsPEF treatment parameters against protoscolices from human hepatic cystic echinococcosis were optimized in vitro. The efficacy and mechanism of nsPEF treatment were also investigated. Fresh protoscolices were isolated from human hepatic cystic echinococcosis and were exposed to 300 ns of nsPEF with different field strengths (0, 7, 14, 21, and 29 kV/cm) and pulse numbers (50 and 100 pulses). Then, the viability of the nsPEF-treated protoscolices was evaluated in vitro. Morphological and ultra-structural changes were visualized with H&E staining and scanning electron microscopy. The membrane enzyme activity of alkaline phosphatase (AP) and gamma-glutamyl-transpeptidase (GGT) was measured. nsPEF caused dose-dependent protoscolex death. One-hundred pulses of nsPEF at 21 kV/cm or higher caused a significant increase in the death rate of protoscolices. nsPEF induced significant lethal damage with 50 pulses at 21 or 29 kV/cm and with 100 pulses at 14, 21, or 29 kV/cm, accompanied by morphological destruction and increased levels of AP and GGT membrane enzymes. Thus, nsPEF induced dose-dependent protoscolex mortality and caused destruction of protoscolices and increased membrane enzymes. The mechanism may involve direct damage to the membrane structures of the protoscolices, promoting enzyme exhaustion and disruption of metabolism.
机译:肝囊性超声波功能亢进的介入治疗的数量正在增加,但这些方法中使用的化学品或高温导致胆道并发症,从而限制了它们的临床应用。该实验研究旨在应用一种新的非热性非化学消融方法,用于治疗人肝囊性超声波功能率的纳秒脉冲电场(NSPEF)。针对人肝囊性超声波功能亢进的对抗原子溶解的NPPEF处理参数进行了优化。还研究了NPSPEF治疗的功效和机制。从人肝囊性超声蚴病中分离出新鲜的原子溶解,并暴露于300ns的NPSPEF,具有不同的场强(0,7,14,21和29kV / cm)和脉冲数(50和100脉冲)。然后,在体外评估NPSPEF处理的原子溶解的活力。用H&E染色和扫描电子显微镜可视化形态学和超结构性变化。测定碱性磷酸酶(AP)和γ-谷氨酸 - 转蛋白酶(GGT)的膜酶活性。 nspef导致剂量依赖的protosoLex死亡。 21 kV / cm或更高的NPSPEF的一百个脉冲导致原子溶剂的死亡率显着增加。 NPEF在21或29kV / cm处具有50个脉冲的显着致命致命损伤,并且在14,21或29kV / cm处具有100个脉冲,伴随着形态破坏和增加的AP和GGT膜酶。因此,NPSEF诱导剂量依赖性质原子散,并导致原子溶解和增加的膜酶破坏。该机制可涉及对策的膜结构直接损伤,促进酶耗尽和代谢的破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号