首页> 外文期刊>Spectroscopy Letters >Revisiting the sodium and calcium matrix effects in inductively coupled plasma optical emission spectrometry. Excitation mechanisms by inelastic collisions
【24h】

Revisiting the sodium and calcium matrix effects in inductively coupled plasma optical emission spectrometry. Excitation mechanisms by inelastic collisions

机译:在电感耦合等离子体光发射光谱法中重新探测钠和钙基质效应。 内部碰撞的激励机制

获取原文
获取原文并翻译 | 示例
       

摘要

The dependence of calcium and sodium matrix effects on the total excitation energy of analyte emission signals was used as a tool for the study of excitation mechanisms in radial view mode inductively coupled plasma optical emission spectroscopy. A total of 95 atomic and 66 ionic emission signals of aluminum, cobalt, chromium, iron, magnesium, manganese, nickel, and silicon in the 3.0-17.59eV energy range were measured at the non-robust plasma operating conditions to facilitate the matrix effect study. Different matrix effects versus total excitation energy relationships were observed regarding the energy interval. The change of sign from negative to positive of the both matrix effect versus total excitation energy relationship observed around 14eV, in the 12.06-17.59eV energy range, is interpreted as experimental evidence of the action of two non-thermic excitation mechanisms: Penning ionization from approximately 12 to 14eV and charge transfer from 14 to 17eV. Based on the energy resonance principle and total spin conservation Wigner's Theorem, possible reactions between excited ionic argon and ground state analyte ions were proposed.
机译:钙和钠基质效应对分析物发射信号的总激发能量的依赖性用作径向视图模式电感耦合等离子体光发射光谱中的激发机制的工具。在3.0-17.59ev中的铝,钴,铬,铁,镁,锰,镍和硅的95个原子和66个离子发射信号中的3.0-17.59ev中的能量范围内测量了能量范围,以方便基质效应学习。关于能量间隔观察到不同的矩阵效应与总激励能量关系相比。从负数到阳性的迹象变化与矩阵效应的阳性相比,在14EV中观察到的总激励能量关系,在12.06-17.59ev的能量范围内被解释为两种非热励磁机制的作用的实验证据:来自的侵入电离大约12到14eV和电荷转移从14〜17ev。基于能量共振原理和全旋转保护Wigner定理,提出了激发离子氩和地态分析物离子之间的可能反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号