首页> 外文期刊>Spectrochimica Acta, Part B. Atomic Spectroscopy >Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure
【24h】

Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

机译:基于石墨炉 - 原子吸收光谱法使用X射线吸收细结构的铁改性剂在硼雾化过程中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures 1738 K, the residual fraction was 3.3% (limit of detection). In the absence of the Fe modifier, B was not detected, even after the drying step. The Fe modifier acted as an adsorbent and retentive agent for B in the PG furnace during the drying and pyrolysis steps. Our results showed that improvement of B absorbance in the presence of the Fe modifier was owing to B retention by Fe oxide with a high oxidation number. The variation of B absorbance with increasing pyrolysis temperature could be explained by differences in the B retention capacity of Fe species in the PG furnace. (C) 2018 Elsevier B.V. All rights reserved.
机译:使用光谱法研究了Fe改性剂对使用石墨炉原子吸光度光谱法的硼雾化过程的作用。热解石墨(PG)炉中的Fe改性剂的初始状态是三价。随着热解温度的增加,Fe改性剂以逐步的方式减少。 Fe2O3和Fe3O4在1300k的热解温度下占优势。从1300〜1500k,Feo是显性的。在高于1700 k的温度下,Fe金属是显性的。在干燥步骤后,17.7%的初始B保持在PG炉中。在773k的热解步骤之后,B的残余部分类似于干燥步骤后的残余部分。在1073k温度的热解步骤之后,残留级分为11.7%。在热解温度下& 1738K,残留级分是<3.3%(&检测限)。在没有Fe改性剂的情况下,即使在干燥步骤之后,也没有检测到B.在干燥和热解步骤期间,Fe改性剂在PG炉中作为B中的吸附剂和保留剂。我们的研究结果表明,由于Fe氧化物的B含量为高氧化数,因此在Fe改性剂存在下改善B吸光度。通过PG炉中Fe种的B保留容量的差异,可以解释B吸光度随着热解温度的变化。 (c)2018 Elsevier B.v.保留所有权利。

著录项

  • 来源
  • 作者单位

    Tokushima Univ Grad Sch Sci &

    Technol 2-1 Minamijosanjima Cho Tokushima 7708506 Japan;

    Tokushima Univ Grad Sch Integrated Arts &

    Sci 1-1 Minamijosanjima Cho Tokushima Japan;

    Hitachi High Technol Corp Chuo Ku 2-15-5 Shintomi Cho Tokyo 1040041 Japan;

    Hitachi High Technol Corp Chuo Ku 2-15-5 Shintomi Cho Tokyo 1040041 Japan;

    Tokushima Univ Grad Sch Sci &

    Technol 2-1 Minamijosanjima Cho Tokushima 7708506 Japan;

    Tokushima Univ Grad Sch Sci &

    Technol 2-1 Minamijosanjima Cho Tokushima 7708506 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子光谱学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号