首页> 外文期刊>Strength of Materials >ASSESSMENT OF HYDROGEN EMBRITTLEMENT IN HIGH-ALLOY CHROMIUM-NICKEL STEELS AND ALLOYS IN HYDROGEN AT HIGH PRESSURES AND TEMPERATURES
【24h】

ASSESSMENT OF HYDROGEN EMBRITTLEMENT IN HIGH-ALLOY CHROMIUM-NICKEL STEELS AND ALLOYS IN HYDROGEN AT HIGH PRESSURES AND TEMPERATURES

机译:高压和温度下高合金铬 - 镍钢和合金的氢脆评估

获取原文
获取原文并翻译 | 示例
           

摘要

The existence of two (low-and high-temperature) extremes of hydrogen embrittlement in heat-resistant austenitic steels and alloys with intermetallic hardening in the range of 293-1073 K was revealed. The low-temperature minimum of their properties in hydrogen is 250-300 degrees higher than that of martensitic and homogeneous austenitic steels. The high-temperature maximum of hydrogen embrittlement manifests itself at 1073 K in steels and alloys with intermetallic hardening and a small percentage of refractory elements (Mo, Nb, W), which retard phase transformations during tests. At 293 K, the action of the external hydrogen atmosphere and absorbed internal hydrogen is determined by the structural class and the nickel content of the material. The degree of brittleness of nickel-base alloys (56 and more wt.% Ni) and heat-resistant martensitic steels is determined by the gaseous hydrogen pressure, and the additional action of internal hydrogen is perceptible only at low pressures. The ductility and low-cycle life characteristics of austenitic steels (23 28 wt.% Ni) deteriorate only after hydrogen presaturation and change only slightly with increasing hydrogen atmosphere pressure, and iron-nickel alloy (43 wt.% Ni) is sensitive to the action of external and internal hydrogen. The existence of a hydrogen degradation limit, the limiting minimum values of the performance characteristics of steels and alloys (specific elongation and lateral contraction ratio, number of cycles to fracture), which do not decrease with increasing adsorbed hydrogen pressure and absorbed hydrogen content and with decreasing loading rate and frequency, has been established. Such values of the mechanical characteristics of martensitic steels and nickel-base alloys are achieved at hydrogen pressures of over 10 and 30 MPa and of dispersion-hardening austenitic steels and alloys at a hydrogen content of 15 and 30 ppm, respectively.
机译:揭示了在293-1073k的范围内耐热奥氏体钢和金属间硬化的合金中的两个(低温和高温)极端的氢气脆化。其在氢气中的低温最小值比马氏体和均匀奥氏体钢的高度高250-300度。氢气脆化的高温最大值在钢材和金属间硬化和金属间化物质(Mo,Nb,W)的小百分比中表现为1073k,其耐火元素(Mo,Nb,W)中的少量抑制率。在293K时,外部氢气氛和吸收的内氢的作用由结构类和材料的镍含量确定。通过气态氢气压力决定镍基合金(56和更多WT.%Ni)和耐热马氏体钢的脆性程度,并且内氢的另外作用仅在低压下可察觉。奥氏体钢的延展性和低循环寿命特征仅在氢超大并仅在增加氢气氛压力下略微发生后劣化,而铁镍合金(43重量%Ni)对其敏感外部和内部氢的作用。氢化极限的存在,限制钢和合金的性能特征的最小值(特定伸长率和横向收缩率,裂缝的循环次数),不会随着吸附的氢气压力和吸收的氢含量和吸收的氢含量而降低已经建立了减少加载率和频率。马氏体钢和镍基合金的机械特性的这种值分别在超过10和30MPa的氢气压力和分散 - 硬化的奥氏体钢和合金的氢含量为15至30ppm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号