...
首页> 外文期刊>Steel in Translation >Texture Inheritance on Phase Transition in Low-Carbon, Low-Alloy Pipe Steel after Thermomechanical Controlled Processing
【24h】

Texture Inheritance on Phase Transition in Low-Carbon, Low-Alloy Pipe Steel after Thermomechanical Controlled Processing

机译:热机械控制处理后低碳低合金管钢相变的纹理遗传

获取原文
获取原文并翻译 | 示例

摘要

AbstractOrientation microscopy (electron back scatter diffraction, EBSD) is used to investigate the structural and textural states of low-carbon, low-alloy pipe steel (resembling 06Г2MБ steel) after thermomechanical controlled processing (TMCP): heating to 1000°C with subsequent quenching in water; isothermal quenching with holding at 300°C; and slow cooling in the furnace. The heat treatment is associated with double phase recrystallization: α → γ → aht, where ahtis martensite, bainite, or ferrite. The texture obtained after TMCP is mainly formed by two strong scattered orientations from {112}?110?and two weaker scattered orientations close to {110}?223?. Despite the double phase recrystallization, the main crystallographic orientations of the bainite after TMCP and after isothermal quenching are the same. That indicates structural and textural inheritance in the material. The structures obtained after other thermal treatments of the structure (both martensite and ferrite) also include complex multicomponent textures, which are nevertheless distinct. Some of the main textural components of martensite and ferrite are the same as bainitic components. All the structures after heat treatment have a similar spectrum of large-angle boundaries, with strongly expressed boundaries of the coincidence site lattices (CSL): Σ3, Σ11, Σ25b, Σ33c, and Σ41c. The orientations forming the texture of all the structures obtained are related to the main orientation of the deformed austenite grains formed on hot rolling in TMCP, in accordance with orientation relations intermediate between the Kurdjumov–Sachs and Nishiyama–Wasserman types. In all cases, the orientation relationship of the textural components of the initial material and the structure obtained by heat treatment may be explained in terms of the onset of phase transformations (both shear and diffusional transition) at crystallographically determined boundaries (including special boundaries) similar to the CSL boundaries Σ3 and Σ11.]]>
机译:<![cdata [ <标题>抽象 ara>方向显微镜(电子背面散射衍射,EBSD)用于研究低的结构和纹理状态 - 热机控加工后的低合金管钢(类似06×2M钢):加热至1000°C,随后在水中淬火;在300°C下保持等温淬火;炉子里缓慢冷却。热处理与双相再结晶相关:α→γ→A <下标> HT ,其中<下标> HT 是马氏体,贝氏体或铁氧体。在TMCP之后获得的纹理主要由{112}}→110的两个强散射取向形成?以及靠近{110}}的两个较弱的散射方向?223?尽管双相再结晶,TMCP后贝氏体的主要晶体取向和等温淬火后相同。这表明了材料中的结构和纹理。在结构(马氏体和铁氧体)的其他热处理之后获得的结构还包括复杂的多组分纹理,其迄今为止是不同的。马氏体和铁氧体的一些主要纹理组件与贝氏体组分相同。热处理后的所有结构具有相似的大角度边界光谱,符合点状点(CSL)的强烈界限(CSL):σ3,σ11,σ25<重点型=“斜体”> B ,Σ33<重点键入=“斜体”> C ,Σ41<重点类型=“斜体”> C 。形成所获得的所有结构的纹理的取向与在TMCP中在热轧中形成的变形奥氏体晶粒的主取向,按照Kurdjumov-Sachs和Nishiyama-Wasserman类型之间的方向关系中间体。在所有情况下,初始材料的纹理部件的取向关系和通过热处理获得的结构可以在相变(包括特殊边界)处的相变(剪切和扩散转变)的发生方面来解释到CSL边界σ3和σ11。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号