...
首页> 外文期刊>Soil Biology & Biochemistry >Soil moisture drives microbial controls on carbon decomposition in two subtropical forests
【24h】

Soil moisture drives microbial controls on carbon decomposition in two subtropical forests

机译:土壤水分驱动两种亚热带林中碳分解的微生物对照

获取原文
获取原文并翻译 | 示例
           

摘要

Knowledge of microbial mechanisms is critical to understand Earth's biogeochemical cycle under climate and environmental changes. However, large uncertainties remain in model simulations and predictions due to the lack of explicit parameterization of microbial data and few applications beyond the laboratory. In addition, most experimental and modeling studies of warming-induced changes in soil carbon (C) focus on temperature sensitivity, neglecting concomitant effects of changes in soil moisture. Soil microbes are sensitive to moisture, and their responses can dramatically impact soil biogeochemical cycles. Here we represent microbial and enzymatic functions in response to changes in moisture in the Microbial-ENzyme Decomposition (MEND) model. Through modeling with long-term field observations from subtropical forests, we demonstrate that parameterization with microbial data in addition to respiration fluxes greatly increases confidence in model simulations. We further employ the calibrated model to simulate the responses of soil organic C (SOC) under multiple environmental change scenarios. The model shows significant increases in SOC in response to decreasing soil moisture and only minor changes in SOC in response to increasing soil temperature. Increasing litter inputs also cause a significant increase in SOC in the pine forest, whereas an insignificant negative effect is simulated in the broadleaf forest. We also demonstrate the co-metabolism mechanism for the priming effects, i.e., more labile inputs to soil could stimulate microbial and enzymatic growth and activity. Our study provides strong evidence of microbial control over soil C decomposition and suggests the future trajectory of soil C may be more responsive to changes in soil moisture than temperature, particularly in tropical and subtropical environments.
机译:在气候和环境变化下了解地球生物地球化学循环至关重要,对微生物机制至关重要。然而,由于缺乏微生物数据的明确参数化和超出实验室的应用,因此仍然存在大的不确定性。此外,大多数实验和建模研究土壤碳(C)对温度敏感性,忽视土壤水分变化的伴随效应。土壤微生物对水分敏感,它们的反应会显着影响土壤生物地球化学循环。在这里,我们代表微生物和酶促功能响应于微生物酶分解(修补)模型中的水分的变化。通过使用来自亚热带林的长期场景的建模,我们证明除了呼吸助焊剂之外的微生物数据的参数化大大增加了模型模拟的置信度。我们进一步采用了校准模型来模拟在多个环境变化方案下的土壤有机C(SoC)的响应。该模型显示SOC的显着增加,响应于降低土壤水分,并且在响应土壤温度的增加时,SOC的微小变化。增加的垃圾投入也会导致松树林中的SOC显着增加,而在阔叶林中模拟了微不足道的负面影响。我们还证明了引发效果的共代谢机制,即对土壤的更多不稳定输入可以刺激微生物和酶促生长和活性。我们的研究提供了对土壤C分解的微生物控制的强有力证据,并提出了土壤C的未来轨迹可能更响应于土壤水分的变化而不是温度,特别是在热带和亚热带环境中。

著录项

  • 来源
    《Soil Biology & Biochemistry》 |2019年第2019期|共10页
  • 作者单位

    Oak Ridge Natl Lab Environm Sci Div Oak Ridge TN 37831 USA;

    Chinese Acad Sci South China Bot Garden Key Lab Vegetat Restorat &

    Management Degraded Ec Guangzhou 510650 Guangdong Peoples R China;

    Oak Ridge Natl Lab Environm Sci Div Oak Ridge TN 37831 USA;

    South China Agr Univ Coll Forestry &

    Landscape Architecture Guangzhou 510642 Guangdong Peoples R China;

    Chinese Acad Sci South China Bot Garden Key Lab Vegetat Restorat &

    Management Degraded Ec Guangzhou 510650 Guangdong Peoples R China;

    Chinese Acad Sci South China Bot Garden Key Lab Vegetat Restorat &

    Management Degraded Ec Guangzhou 510650 Guangdong Peoples R China;

    Chinese Acad Sci South China Bot Garden Key Lab Vegetat Restorat &

    Management Degraded Ec Guangzhou 510650 Guangdong Peoples R China;

    Chinese Acad Sci South China Bot Garden Key Lab Vegetat Restorat &

    Management Degraded Ec Guangzhou 510650 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农业基础科学;
  • 关键词

    Heterotrophic respiration; Microbial model; Soil carbon decomposition; Soil moisture; Soil microbe; Subtropical forests;

    机译:异养呼吸;微生物模型;土碳分解;土壤水分;土壤微生物;亚热带林;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号