...
首页> 外文期刊>Small >A Salt-Templated Strategy toward Hollow Iron Selenides-Graphitic Carbon Composite Microspheres with Interconnected Multicavities as High-Performance Anode Materials for Sodium-Ion Batteries
【24h】

A Salt-Templated Strategy toward Hollow Iron Selenides-Graphitic Carbon Composite Microspheres with Interconnected Multicavities as High-Performance Anode Materials for Sodium-Ion Batteries

机译:具有互连多瓦的空心铁硒化物 - 石墨碳复合微球的盐模型策略,作为钠离子电池的高性能阳极材料

获取原文
获取原文并翻译 | 示例

摘要

In this work, a facile salt-templated approach is developed for the preparation of hollow FeSe_2/graphitic carbon composite microspheres as sodium-ion battery anodes; these are composed of interconnected multicavities and an enclosed surface in-plane embedded with uniform hollow FeSe_2 nanoparticles. As the precursor, Fe_2O_3/carbon microspheres containing NaCl nanocrystals are obtained using one-pot ultrasonic spray pyrolysis in which inexpensive NaCl and dextrin are used as a porogen and carbon source, respectively, enabling mass production of the composites. During post-treatment, Fe_2O_3 nanoparticles in the composites transform into hollow FeSe_2 nanospheres via the Kirkendall effect. These rational structures provide numerous conductive channels to facilitate ion/electron transport and enhance the capacitive contribution. Moreover, the synergistic effect between the hollow cavities within FeSe_2 and the outstanding mechanical strength of the porous carbon matrix can effectively accommodate the large volume changes during cycling. Correspondingly, the composite microsphere exhibits high discharge capacity of 510 mA h g~(-1) after 200 cycles at 0.2 A g~(-1) with capacity retention of 88% when calculated from the second cycle. Even at a high current density of 5.0 A g~(-1), a high discharge capacity of 417 mA h g~(-1) can be achieved.
机译:在这项工作中,开发了一种容易涂料的模板方法,用于制备空心Fese_2 /石墨碳复合微球作为钠离子电池阳极;这些由互连的多花花序和嵌入嵌入均匀的空心FESE_2纳米颗粒的平面内的封闭表面组成。作为前体,使用一种含NaCl纳米晶体的Fe_2O_3 /碳微球,其使用一锅超声波喷雾热解,其中廉价的NaCl和糊精分别用作致孔剂和碳源,使得复合材料的质量产生。在后处理期间,复合材料中的Fe_2O_3纳米颗粒通过Kirkendall效应转化为空心Fese_2纳米球。这些Rational结构提供了许多导电通道,以便于离子/电子传输并增强电容贡献。此外,FESE_2内的中空腔之间的协同效应和多孔碳基质的出色机械强度可以有效地适应循环期间的大体积变化。相应地,在从第二个循环计算时,复合微球在0.2Ag〜(-1)下的200次循环后的高放电容量为510mA h g〜(-1)。即使在5.0A G〜(-1)的高电流密度,也可以实现417mA H G〜(-1)的高放电容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号