首页> 外文期刊>Small >Cross-Plane Carrier Transport in Van der Waals Layered Materials
【24h】

Cross-Plane Carrier Transport in Van der Waals Layered Materials

机译:van der WALS层状材料的跨平面载体运输

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanisms of carrier transport in the cross-plane crystal orientation of transition metal dichalcogenides are examined. The study of in-plane electronic properties of these van der Waals compounds has been the main research focus in recent years. However, the distinctive physical anisotropies, shortchannel physics, and tunability of cross layer interactions can make the study of their electronic properties along the out-of-plane crystal orientation valuable. Here, the out-of-plane carrier transport mechanisms in niobium diselenide and hafnium disulfide are explored as two broadly different representative materials. Temperature-dependent current-voltage measurements are preformed to examine the mechanisms involved. First principles simulations and a tunneling model are used to understand these results and quantify the barrier height and hopping distance properties. Using Raman spectroscopy, the thermal response of the chemical bonds is directly explored and the insight into the van der Waals gap properties is acquired. These results indicate that the distinct cross-plane carrier transport characteristics of the two materials are a result of material thermal properties and thermally mediated transport of carriers through the van der Waals gaps. Exploring the cross-plane electron transport, the exciting physics involved is unraveled and potential new avenues for the electronic applications of van der Waals layers are inspired.
机译:检查了过渡金属二甲基甲基甲基化物的跨平面晶体取向的载流子输送机制。这些Van der Waals化合物的平面内电子特性的研究已经是近年来的主要研究重点。然而,横梁相互作用的独特的物理各向异性,短路物理和可调性可以沿着平面外晶体取向有价值地研究它们的电子特性。这里,铌铌和铪二硫化铪中的平面外载体传输机制被探索为两个广泛不同的代表性材料。依赖于温度相关的电流电压测量以检查所涉及的机制。第一原理模拟和隧道模型用于了解这些结果并量化屏障高度和跳跃距离特性。使用拉曼光谱,直接探索化学键的热响应,并获得对van der WAALS间隙性能的洞察力。这些结果表明,两种材料的不同的平面载波传送特性是材料热性质的结果,并且通过van der下游间隙热介导的载体传输。探索跨平面电子传输,涉及的令人兴奋的物理学是解开的,并且潜在的新途径用于van der Waals层的电子应用。

著录项

  • 来源
    《Small》 |2018年第20期|共11页
  • 作者单位

    Sensors and Electron Devices Directorate United States Army Research Laboratory 2800 Powder Mill Road Adelphi MD 20783 USA;

    Sensors and Electron Devices Directorate United States Army Research Laboratory 2800 Powder Mill Road Adelphi MD 20783 USA;

    Sensors and Electron Devices Directorate United States Army Research Laboratory 2800 Powder Mill Road Adelphi MD 20783 USA;

    Sensors and Electron Devices Directorate United States Army Research Laboratory 2800 Powder Mill Road Adelphi MD 20783 USA;

    Sensors and Electron Devices Directorate United States Army Research Laboratory 2800 Powder Mill Road Adelphi MD 20783 USA;

    Sensors and Electron Devices Directorate United States Army Research Laboratory 2800 Powder Mill Road Adelphi MD 20783 USA;

    National High Magnetic Field Laboratory Florida State University 1800 E. Paul Dirac Drive Tallahassee FL 32310 USA;

    National High Magnetic Field Laboratory Florida State University 1800 E. Paul Dirac Drive Tallahassee FL 32310 USA;

    Department of Electrical and Computer Engineering Duke University Durham NC 27708 USA;

    Sensors and Electron Devices Directorate United States Army Research Laboratory 2800 Powder Mill Road Adelphi MD 20783 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    cross-plane electron transport; layered materials; transition metal dichalcogenides; tunneling; van der Waals gaps;

    机译:跨平面电子运输;分层材料;过渡金属二甲硅藻化物;隧道;van der waals差距;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号